

2026

Seasonal Climate Prediction

A publication of Nigerian Meteorological Agency

©2026

Table of Contents

Table of Figures	iv
Forward	v
Executive Summary	vi
Chapter One	01
The Scientific Basis for Prediction	01
Climate Drivers	01
Chapter Two	04
2026 Seasonal Climate Predictions	04
Rainfall Predictions	04
Onset Dates of Rainy Season & Departure from Normal (Long-term Average)	04
Predicted 2026 Cessation Dates and Departure from Normal	06
Predicted Length of Rainy Season & the Departure from Normal (Long-term Average) ..	07
Predicted Annual Rainfall Amounts & the Departure from Normal (Long-term Average)	08
Dry Spell Prediction for 2026 Rainy Season	09
2026 Little Dry Season (LDS) Prediction	11
2026 Temperature Prediction	12
Predicted Day-Time Temperatures Across Nigeria for January 2026	12
Predicted Night-Time Temperatures Across Nigeria for January 2026	13
Predicted Day-Time Temperatures Across Nigeria for February 2026	14
Predicted Night-Time Temperature Across Nigeria for February 2026	15
Predicted Daytime Temperatures Across Nigeria for March 2026	16
Predicted Nighttime Temperatures Across Nigeria for March 2026	17
Predicted Daytime Temperatures Across Nigeria for April 2026	18
Predicted Nighttime Temperatures Across Nigeria for April 2026	19
Predicted Day-Time Temperatures Across Nigeria in May 2026	20
Predicted Nighttime Temperatures Across Nigeria for May 2026	21
Climate and Health	22
Chapter Three	32

Implications of the 2026 Seasonal Climate Prediction for Some Key Economic Sectors	32
Aviation	32
Agriculture	34
Water Resources Management	44
Transportation sector	46
Marine Transportation and Blue Economy	51
Power Sector.....	54
Hydropower Generation	54
Renewable Energy (Solar and Wind).....	55
Telecommunication Sector	56
Disaster Risk Reduction	58
Health Sector	62
Building and Construction Sector	66
Chapter Four	69
Economic Implications of Seasonal Climate Prediction	69
The 2026 Sesonal Climate Prediction and its impacts on production (GDP).....	70
The Macroeconomic Landscape and the value of the Seasonal Climate Prediction.....	71
Sectoral Benefits of Seasonal Climate Predictions (SCP) and Policy Recommendations	72
Chapter Five	77
Daytime and Nighttime Temperature Predictions	77
Chapter Six	85
6.1 Detailed 774 Local Government Area Seasonal Rainfall Prediction.....	85
GLOSSARY	101
NIMET CONTACTS NATIONWIDE	106
Leadership Legacy	108
Centenary Awards by WMO	109
Oldest Observations	110

Table of Figures

Figure 1: IRI/CPC Model Consensus ENSO Prediction	02
Figure 2: Bureau of Meteorology Consensus ENSO and IOD Forecast.....	02
Figure 3: Predicted Onset Dates and Departures, from the Normal, of the 2026 Rainy Season Across Nigeria.....	04
Figure 4: Predicted End of Growing Season and Departure from Normal for 2026	06
Figure 5: Predicted Length of Growing Season and the Departure from Normal.....	07
Figure 6: Predicted Annual rainfall amount and Departure from normal.....	08
Figure 7: Predicted areas of occurrence of dry spell in March – May (a) and June - August 2026 (b)	09
Figure 8: Predicted 2026 Little Dry Season.....	11
Figure 9: Predicted January 2026 Daytime temperature and departure from normal.....	12
Figure 10: Predicted January 2026 Night-time temperature and departure from normal.....	13
Figure 11: Predicted February 2026 Daytime temperature and departure from normal.....	14
Figure 12: Predicted February 2026 Nighttime temperature and departure from normal.	15
Figure 13: Predicted March 2026 Daytime temperature and departure from normal.....	16
Figure 14: Predicted March 2026 Night-time temperature and departure from normal.	17
Figure 15: Predicted April 2026 Daytime temperature and departure from normal.....	18
Figure 16: Predicted April 2026 Night-time temperature and departure from normal.....	19
Figure 17: Predicted May 2026 Daytime temperature and Departure from normal.....	20
Figure 18: Predicted May 2026 Night-time temperature and Departure from normal.....	21
Figure 19: Anopheles mosquito	22
Figure 20: Meningitis belt of Africa	22
Figure 21: January 2026 Malaria Vigilance	23
Figure 22: February 2026 Malaria Vigilance	24
Figure 23: March 2026 Malaria Vigilance	25
Figure 24: April 2026 Malaria Vigilance.....	25
Figure 25: May 2026 Malaria Vigilance.....	27
Figure 26: January 2026 Meningitis Vigilance	28
Figure 27: February 2026 Meningitis Vigilance	29
Figure 28: March 2026 Meningitis Vigilance	29
Figure 29: April 2026 Meningitis Vigilance.....	30
Figure 30: May 2026 Meningitis Vigilance.....	31
Figure 31: Nnamdi Azikiwe International Airport	32
Figure 32: Crop Farm	35
Figure 33: Poultry	38
Figure 34: Cattle Stall	39
Figure 35: Rabbitry	41
Figure 36: Fishpond	42
Figure 37: Beehive.....	43
Figure 38: Tap Water.....	44
Figure 39: Abuja Road Transport	46
Figure 40: Abuja Rail	49
Figure 41: Lagos State Ferry	51
Figure 42: Oil Exploration in Nigeria.....	52
Figure 43: Ocean food market	53
Figure 44: Recreational beach in the coastal city of Lagos.....	53
Figure 45: Renewable Energy, Power Generation and Distribution	54
Figure 46: Mobile Network Tower	56
Figure 47: Mokwa community under flood	59
Figure 48: 2025 Mokwa flood.....	59
Figure 49: Public Health communication	65
Figure 50: Construction Site	66

Foreword

Globally, accurate and timely climate information has become one of the most powerful tools available to governments to build resilience, safeguard lives and infrastructure, and achieve sustainable socio-economic growth. Given the increasing dangers posed by climate change and the associated extreme weather events, the science of weather and climate must no longer remain confined to classroom research or technical reports. It must be translated into timely, actionable information that informs government policies, provides guidance for investment decisions, supports disaster risk reduction efforts, and the day-to-day operations of citizens and industries across all sectors of the economy.

This has become the central philosophy underpinning the Nigerian Meteorological Agency's Seasonal Climate Prediction (SCP) over the years and has remained the same for the 2026 season

SCP is a product of rigorous and thorough application of meteorological and climate science, combining global best practices and in-house technical expertise. Leveraging El Niño Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) climate modes as the foundational drivers in generating the climate predictions. For the 2026 season, these global and regional climate indicators point towards a predominantly neutral ENSO phase, a scenario that has important implications for rainfall onset, amount, and cessation characteristics, temperature extremes, and the associated sectoral risks across the country.

Beyond seasonal averages, the 2026 SCP provides detailed information on rainfall onset and cessation, length of the growing season, spatial rainfall distribution, dry spell, and temperature patterns across all the Local Government Areas in Nigeria. These are essential for agriculture, food security, aviation, water resources management, marine and blue economy, building and construction, disaster risk reduction, energy planning, health, etc. Of particular importance is the emphasis on early-season rainfall events and false onset risks, which, if not properly understood, can result in avoidable economic losses for farmers and other climate-sensitive actors.

The aviation sector remains a major beneficiary of accurate and timely climate services. The 2026 SCP contains information aimed at strengthening flight planning, airport operations, and safety management systems across all our airports. The document is also in line with the Federal Government's broader commitment to climate resilience, food security, disaster risk reduction, and sustainable socio-economic development.

Amid global environmental, socioeconomic and political challenges, the work of scientists for humanity remains critical, and that is why the Nigerian Meteorological Agency (NiMet) has evolved for over a century, staying true to its mandate, collaborating effectively and providing decades of science for action; thereby de-risking economic activities, enabling preparedness and saving lives and property.

Finally, the value of this climate prediction is not just about its scientific accuracy but in the actions it will inspire. Critical to the success of climate resilience is awareness, enlightenment and sharing of relevant scientific information and advisories. This is what the Seasonal Climate Prediction (SCP) represents, supporting Mr. President's resolve to address climate change issues with multi-sectoral innovative agenda across the country.

It is my hope that the 2026 SCP document will serve as a trusted guide, providing all stakeholders in the weather and climate services value chain with the necessary information to make and implement climate-smart decisions for the socio-economic development of Nigeria.

Festus Keyamo, SAN, CON, FCIArb (UK)
Honourable Minister of Aviation and Aerospace Development
(Minister in charge of Meteorology in Nigeria)
February 2026

Executive Summary

The Nigerian Meteorological Agency (NiMet) produces the Seasonal Climate Prediction (SCP) annually to fulfil its statutory responsibility to advise the Government and people of Nigeria on all aspects of weather and climate. The SCP offers an outlook on various climate variables, including the year's rainfall and temperature patterns. NiMet employs state-of-the-art forecasting techniques, long-term meteorological data, and contemporary scientific knowledge to develop these forecasts.

The information presented in the SCP is vital for policy formulation, planning, and decision-making by operators, stakeholders, and individuals in both the private and public sectors in Nigeria. Aviation authorities have used SCP advisories to enhance flight planning and airport safety management. It enables farmers to adjust planting schedules, reducing crop losses due to unexpected rainfall patterns. At the same time, the SCP provides a glimpse into essential climate parameters and their expected behaviour throughout the season.

Furthermore, a co-production process involving relevant stakeholders from weather-sensitive sectors such as agriculture, aviation, construction, water resources, health, trade, livestock, and tourism is employed to ensure that forecasts are tailored to users' needs. These user-tailored forecasts mean the

SCP offers sector-specific advisories for issuing early warnings for disease outbreaks to the health sector or providing guidance on runway conditions for the aviation sector, ensuring that each area receives relevant and actionable information to support effective decision-making.

The 2026 Seasonal Climate Prediction (SCP) is based on a projected weak La Niña and a neutral phase of the El Niño Southern Oscillation and forecasts an early to normal onset of the rainy season, normal to late cessation, and normal to above normal rainfall and season duration. Temperatures are likely to be above normal for most parts of the country. Onset refers to the expected start of the rainy season, while cessation indicates when it is likely to end. The length of season describes the duration between the onset and cessation dates.

Pre-Onset Activities (False Onset)

In the early part of 2026, notable rainfall events are anticipated prior to the full onset of the rainy season. These pre-onset rains are largely influenced by key atmospheric drivers, particularly the Madden-Julian Oscillation (MJO) and the Mid-Latitude Wave (MLW). The Madden-Julian Oscillation (MJO) is a large-scale atmospheric disturbance that influences tropical rainfall patterns, while the Mid-Latitude Wave (MLW) refers to undulations in the jet stream that can affect weather systems. Regions in the southern part of Nigeria are expected to experience rainfall during January and February, which may result in localised flooding and temporary waterlogging in low-lying areas. Such conditions underscore the importance of early warning and preparedness measures for communities likely to be affected.

Rainfall Onset Dates

The 2026 prediction indicates that earlier-than-normal onset of the rainy season in Nigeria is likely to occur over Bayelsa, Rivers, Benue, and Kogi states, as well as parts of Kebbi, Niger, Jigawa, Katsina, Kano, Adamawa, Taraba, Oyo, and Nasarawa states; while most other parts of the country are forecasted to have normal onset dates. However, a late onset of the rainy season is predicted for Borno state.

Rainfall Cessation Dates

Most parts of the country will experience a normal end (cessation) of the 2026 rainy season. However, parts of Lagos, Ogun, Anambra, Enugu, Cross River,

Benue, Nasarawa, and Kaduna states are expected to have a delayed cessation, meaning that the 2026 rainy season will likely end later than usual. Conversely, the cessation dates in parts of Ogun, Osun, Ondo, Imo, Rivers, Akwa Ibom, Kogi, and Niger states are predicted to end earlier than the long-term average cessation dates, with the rainfalls stopping sooner than usual.

Length of Rainy Season

The predicted length of the rainy season in 2026 is expected to be normal across most parts of the country. However, a shorter-than-normal length of rainy season is expected in parts of Borno, Yobe, and Niger states. The forecast also reveals that Lagos, Benue, Enugu, and parts of Ebonyi, Ogun, Oyo, Nasarawa, Anambra, Kwara, Kebbi, Kaduna, Gombe, and Taraba states are likely to have longer-than-normal length of rainy season this year. These deviations from the normal rainy season length could affect agricultural planning and water resource management in the affected regions.

Rainfall Amounts

The 2026 seasonal forecast indicates that total rainfall is likely to be below normal in parts of Katsina, Zamfara, Kwara, Oyo, and Ogun states relative to their long-term averages. In contrast, above-normal rainfall is predicted for parts of Borno, Sokoto, Kebbi, Kaduna, Enugu, Cross River, Abia, Ebonyi, and Akwa Ibom states, as well as the Federal Capital Territory (FCT). The remaining parts of the country are expected to experience normal rainfall conditions.

Temperature

Temperatures are expected to be generally above the long-term average across the country. Both

daytime and nighttime temperatures are predicted to be warmer than the long-term average over most parts of the country in January, February, March, April, and May 2026.

Dry Spells

The Prediction shows that in the March – May season: There is a likelihood of a severe dry spell lasting more than 15 days after the establishment of rainfall in Oyo and Ogun states. A moderate dry spell, lasting up to 15 days, may occur in the Southern states: Ekiti, Kogi, Osun, Ondo, Ogun, Edo, Ebonyi, Abia, Cross River, and Delta, and Central region: parts of Kogi and Kwara states.

June - August season: A severe dry spell that may last up to 21 days is predicted for the northern and central states of Nigeria during the June-July-August season. Such prolonged dry conditions could significantly affect crop yields and water availability in these regions, potentially disrupting agricultural activities and daily life.

Little Dry Season (LDS)

The prediction shows that in 2026; the Little Dry Season is likely to commence between the 26th and 30th of July. However, signs of the LDS season may begin to manifest by mid-July. The dry conditions that characterise the season are expected to be quite severe in and around Lagos, Ogun, Ekiti, and parts of Oyo states. The length of the season in those places is expected to last more than 27 days. In Ondo, parts of Kwara, and Edo states, the intensity is expected to be moderate.

The 2026 SCP serves as Climate data for action and as an early warning tool for all Nigerians in line with the United Nations Early Warning for all initiatives and to climate-proof the Eight-point agenda of President Bola Ahmed Tinubu GCFR.

Professor Charles Anosike

Director General/CEO
Nigerian Meteorological Agency(NiMet) & Permanent
Representative of Nigeria with WMO

February 2026

Chapter One

The Scientific Basis for Prediction

Climate Drivers

El Niño-Southern Oscillation (ENSO) Synopsis

Sea Surface Temperature (SST) anomalies around the Niño 3.4 region (5°N to 5°S, 170°W to 120°W) of the tropical central Pacific Ocean are the primary indicator for the El Niño-Southern Oscillation (ENSO). ENSO is a powerful climate phenomenon that exerts profound impacts on the global climate and accounts for the major source of seasonal to inter-annual climate prediction skill. It has long been established that there is a strong teleconnection between this phenomenon and weather/climate patterns in different parts of the world, including West Africa and Nigeria (Linear trends in sea surface temperature of the tropical Pacific Ocean and implications for the El Niño - Southern Oscillation <https://rdcu.be/eJ0Na>¹). ENSO is the basis upon which climate forecasts are made in several parts of the world, including Nigeria. The Nigerian Meteorological Agency (NiMet) has, for over a decade now, continued to use ENSO phase information in combination with long-term climatological data as the main drivers of the Seasonal Climate Prediction (SCP) model.

The Global ENSO Prediction centres have predicted that even though 2026 is expected to start with a weak "La Niña" in January, the neutral phase of ENSO is likely to be predominant during the first 6 to 8 months of the year. Both statistical and dynamic multi-model ensemble probabilistic ENSO forecasts from the Institute of Research for Climate and Society (IRI)/CPC, USA, and the Bureau of Meteorology (BoM), Australia, agree that a neutral ENSO phase may predominate in 2026. NiMet's 2026 Seasonal Climate Prediction is therefore based on a Neutral ENSO phase.

Accordingly, there is an approximately 52% chance of La Niña between the end of 2025 and early 2026 – December-January-February (DJF) season (Figure 1). As the events progress into the January-February-March (JFM) season, there is a 62% probability that a neutral phase will dominate. Thereafter, the chances increase steadily to about 80% by the March-April-May (MAM) season, after which the chances of the neutral phase decrease steadily to approximately 49% by the July-August-September (JAS) season. It is therefore very likely that the ENSO neutral phase will persist throughout the country's rainy season of 2026. The implication of a likely predominant ENSO neutral phase is generally near-normal to above-normal 2026 rainfall season over Nigeria. Towards

¹ Linear trends in sea surface temperature of the tropical Pacific-Ocean and implications for the El Niño-Southern Oscillation

the end of the year, chances of a transition from a neutral phase to an El Niño (warm phase) begin to increase.

A neutral Indian Ocean Dipole (IOD) is also predicted in 2026, in agreement with the predicted ENSO phase and expected rainfall pattern in the year (Figure 2). The predicted events in 2026 will be closely monitored by the Nigerian Meteorological Agency to provide regular updates as the season unfolds.

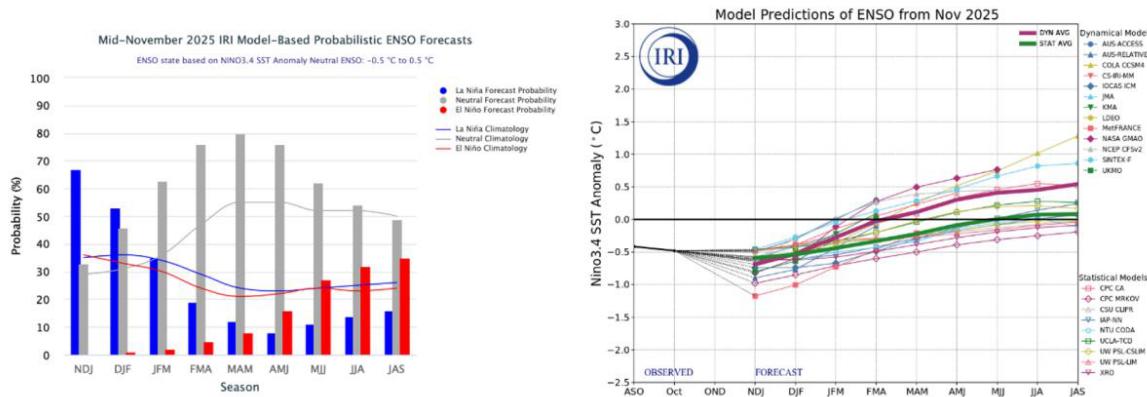


Figure 1: IRI/CPC Model Consensus ENSO Prediction

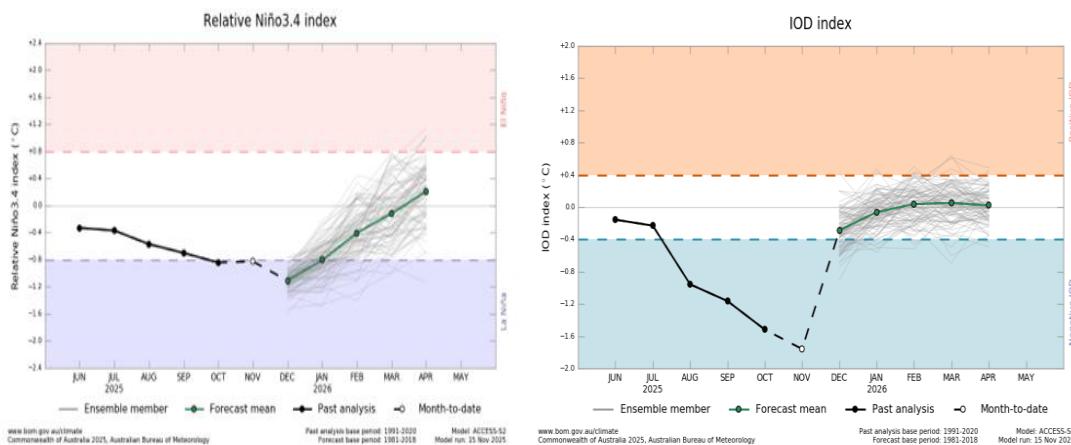


Figure 2: Bureau of Meteorology Consensus ENSO and IOD Forecast

Pre-Onset Activities (False Onset)

The onset of the rainy season in the country typically coincides with the full arrival of the southwest monsoon, usually marked by frequent significant rainfall events. These initial heavy rains can be both intense and extended, which may prompt premature agricultural activities such as crop planting. However, these precipitation events may cease abruptly, resulting in dry conditions and potential financial losses due to crop failure. It is therefore recommended that farmers await NiMet's confirmation of sustained rainfall patterns, as forecasted, before proceeding with

planting. Adopting this strategy can more effectively address the inherent unpredictability associated with atmospheric processes.

Consistent with previous patterns, it is anticipated that 2026 will experience substantial rainfall events during the early part of the year, before the complete onset of the season. Several atmospheric drivers contribute to the development of significant rainfall events before the full establishment of the rainy season. Two key factors are: (i) the Madden-Julian Oscillation (MJO) and (ii) the Mid-Latitude Wave (MLW).

- a. **The Madden-Julian Oscillation (MJO):** The MJO is a convective atmospheric phenomenon occurring primarily in the tropics. Like other weather and climate events, the MJO's behaviour is being influenced by the ongoing rise in global air temperatures. Notably, recent studies have shown that the variability of the MJO has increased in recent years due to rising global temperatures. In 2026, the MJO is expected to exhibit even more erratic behaviour. The MJO amplifies weather events by increasing their intensity and spatial extent, which can result in unusually early rainfall. Specifically, the enhanced convective activity associated with the MJO can trigger precipitation events before the typical onset of the rainy season, thereby increasing the chances of early-season rains.

- b. **The Mid-Latitude Wave (MLW):** The MLW is an extension of the Rossby Wave circulation, whose strength is governed by the temperature differential between the Poles and the mid-latitudes. In a warming climate, this temperature differential is reduced, leading to distortions in the Rossby Wave structure and contributing to more erratic and extreme weather patterns. When the MLW extends southward into North Africa, it increases the likelihood of moisture being transported far inland through meridional influxes. This southward movement facilitates the transport of moist air masses into typically dry regions, directly contributing to the likelihood of unseasonal rainfall. As a result, the MLW will play a significant role in producing early rainfall events before the true onset of the rainy season.

Chapter Two

2026 Seasonal Climate Prediction

The 2026 Seasonal Climate Prediction (SCP) is based on a projected weak La Niña and a neutral phase of the El Niño Southern Oscillation and forecasts an early to normal onset of the rainy season, normal to late cessation, and normal to above normal rainfall and season duration. Temperatures are likely to be above normal for most parts of the country. Onset refers to the expected start of the rainy season, while cessation indicates when it is likely to end. The length of season describes the duration between the onset and cessation dates.

Rainfall Predictions

Onset Dates of Rainy Season & Departure from Normal (Long-term Average)

Onset Date – the point when the amount of water accessible to plant roots in the soil reaches 50% of the soil's total water-holding capacity, measured cumulatively from the start of the rainy season.

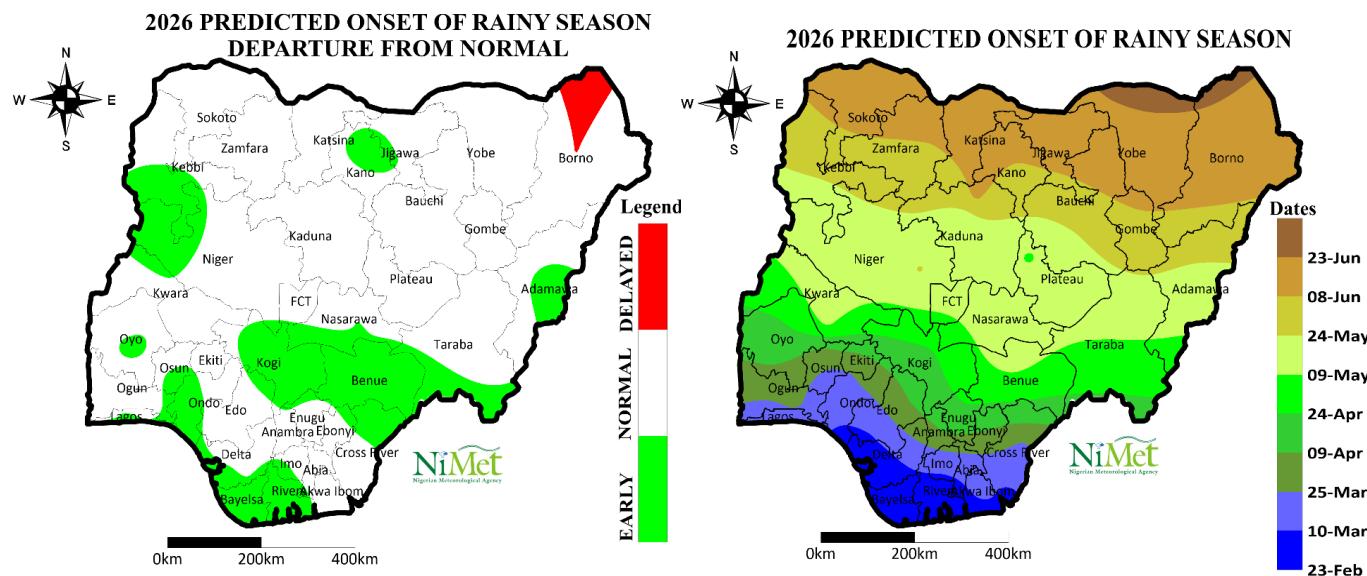


Figure 3: Predicted Onset Dates and Departures, from the Normal, of the 2026 Rainy Season Across Nigeria

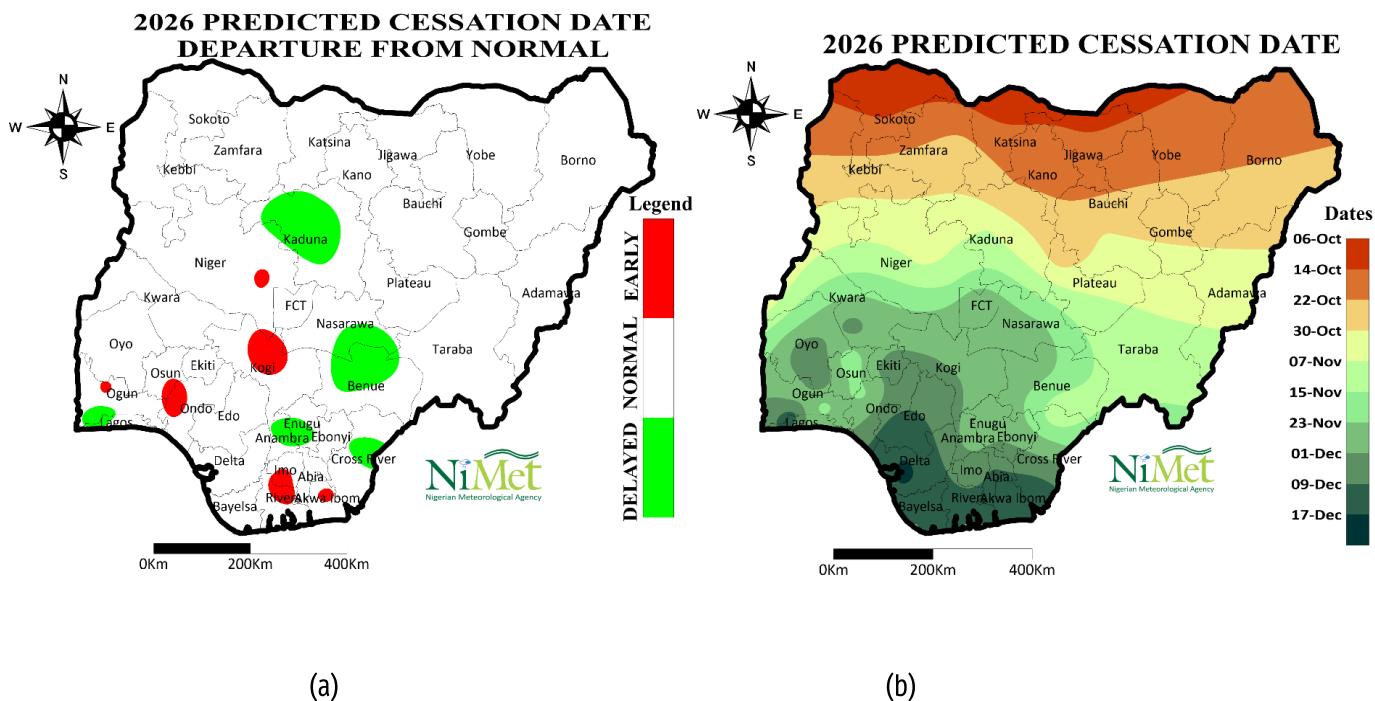
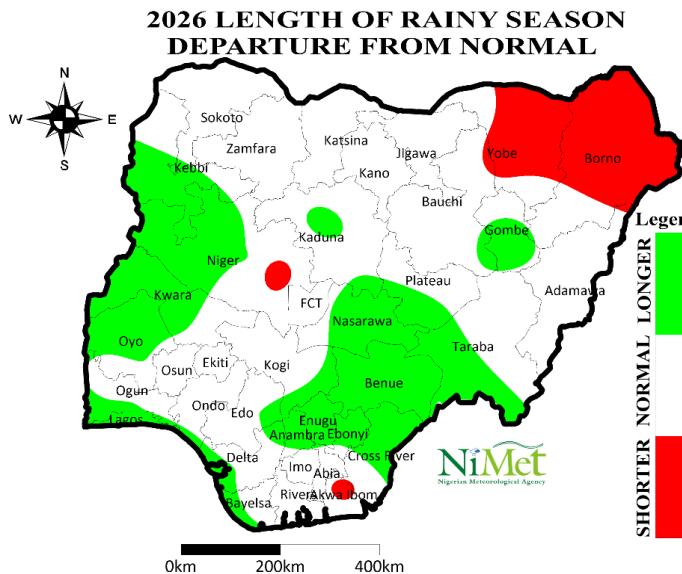
The 2026 forecast (Figure 3(a)) indicates that earlier-than-normal onset of the rainy season is likely to occur over Bayelsa, Rivers, Benue, and Kogi states, as well as parts of Kebbi, Niger, Jigawa, Katsina, Kano, Adamawa, Taraba, Oyo, and Nasarawa states, while most other parts of the country are forecasted to have normal onset dates. However, a late onset of the rainy season is predicted for Borno state.

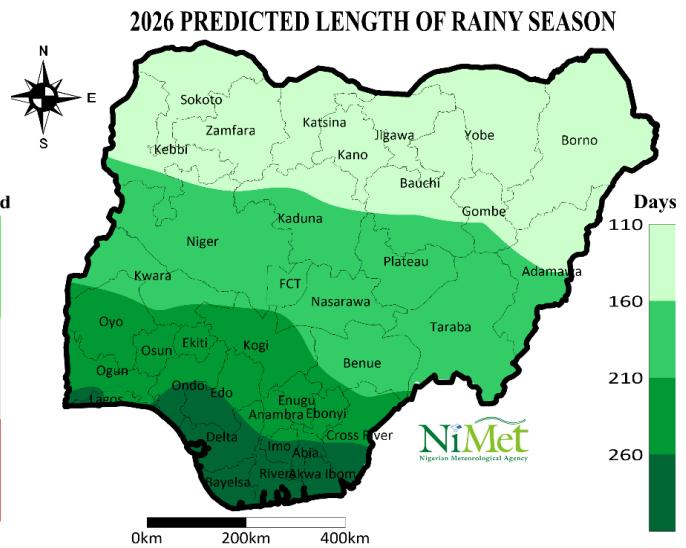
The earliest rainy season onset date of February 23rd, 2026, is predicted for Bayelsa State. For the central states of the country, the onset of the rainy season is expected from the 21st of April to the 15th of May, while the rainy season in most of the northern states is predicted to commence between 18th and 23rd June 2026. These locations are highlighted in Figure 3(b), which maps the onset dates of the rainy season across the country.

Geographic and climatic factors primarily influence the variation in onset dates across the country. Southern coastal states, such as Bayelsa, Rivers, and Delta, tend to receive earlier rainfall due to their proximity to the Atlantic Ocean, from which the Southwesterlies bring moisture into the country. Conversely, northern states such as Borno, Sokoto, Katsina, Zamfara, and Yobe typically see a delayed onset because they are farther from the ocean and are more influenced by drier, continental air masses, resulting in a later arrival of the rainy season.

It is important to note that strong windstorms across the country and sandstorms in the extreme northern states are precursor to the onset period. Safety precautions are advised.

Predicted 2026 Cessation Dates and Departure from Normal


Figure 4: Predicted End of Growing Season and Departure from Normal for 2026

The prediction shows that most parts of the country will experience a normal end (cessation) of the 2026 rainy season (see Figure 4a). Here, "cessation" refers to the cessation period marks the end of the rainy season, defined as the point when the moisture available to plant roots in the soil, known as available water content, drops to 20% of the soil's total water-holding capacity. "Available water content" refers to the amount of water in the soil that plants can readily absorb for growth. As shown in Figure 4(b), parts of Lagos, Ogun, Anambra, Enugu, Cross River, Benue, Nasarawa, and Kaduna states, are expected to have a delayed cessation; meaning that the 2026 rainy season will likely end later than usual. Conversely, the cessation dates in parts of Ogun, Osun, Ondo, Imo, Rivers, Akwa Ibom, Kogi, and Niger states are predicted to end earlier than the long-term average cessation dates.

As shown in Figure 4 (b), the cessation of the 2026 rainy season is predicted to occur around 6th October over the northernmost parts of Sokoto, Katsina, Jigawa, and Yobe states. This is expected to be followed by cessations over most Northern States between 14th and 30th October. Furthermore, the forecast shows that in the central states and inland states of the south, cessation is expected to occur from 7th November through 1st December, while the coastal states such as Lagos, Delta, Bayelsa, Rivers, and Akwa Ibom states, as well as parts of Ondo, Edo and Abia states, are predicted to have their cessation of the rainy season from 9th through 17th December.

Predicted Length of Rainy Season & the Departure from Normal (Long-term Average)

(a)

(b)

Figure 5: Predicted Length of Growing Season and the Departure from Normal.

The prediction shows that the length of the rainy season in 2026 is expected to be normal across most parts of the country, as shown in Figure 5 (a). However, a shorter-than-normal length of rainy season is expected in parts of Borno, Yobe, Niger, and Akwa Ibom states. The forecast also reveals that Lagos, Benue, Enugu, and parts of Ebonyi, Ogun, Oyo, Nasarawa, Anambra, Kwara, Kebbi, Kaduna, Gombe, and Taraba states are likely to have longer-than-normal length of rainy season this year.

The length of the rainy season is predicted to vary across the country. The southern states, such as Lagos, Delta, Bayelsa, Cross River, Rivers, Akwa Ibom, as well as Ogun, Oyo, Ekiti, Osun, Ebonyi, Anambra, and Enugu, are expected to have lengths of rainy season ranging from 210 to 290 days in 2026. However, the length of the rainy season is likely to be between 160 and 210 days over the central states of the country. In the northern states of Sokoto, Katsina, Zamfara, Kano, Jigawa, Yobe, and Borno, the lengths of the rainy season are projected to range from 110 to 160 days.

Details of this prediction according to states are contained in the summary tables.

Predicted Annual Rainfall Amounts & the Departure from Normal (Long-term Average)

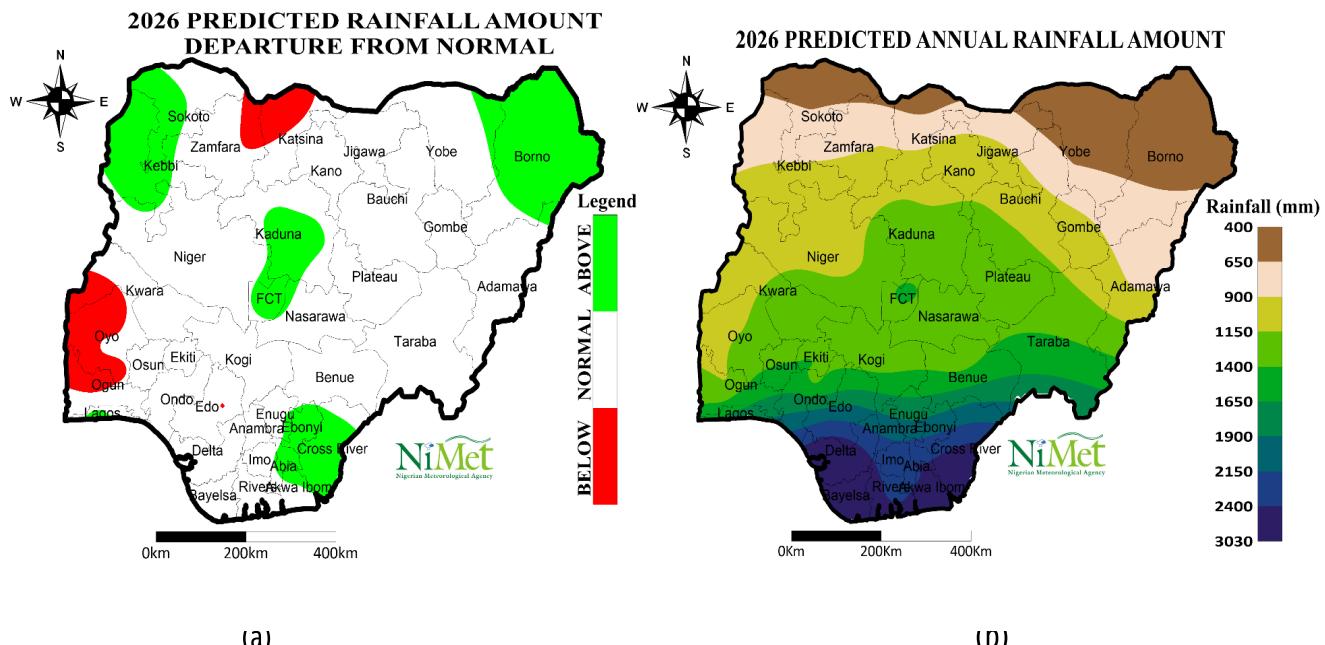


Figure 6: Predicted Annual rainfall amount and Departure from normal.

The 2026 seasonal forecast indicates that total rainfall is likely to be below normal in parts of Katsina, Zamfara, Kwara, Oyo, and Ogun States relative to their long-term averages. In contrast, above-normal rainfall is predicted for parts of Borno, Sokoto, Kebbi, Kaduna, Enugu, Cross River, Abia, Ebonyi, and Akwa Ibom states, as well as the Federal Capital Territory (FCT). These predictions are depicted in Figure 6(a) which shows the spatial distribution of predicted rainfall anomalies across the country. The remaining parts of the country are expected to experience normal rainfall conditions.

The total annual rainfall across Nigeria in 2026 is predicted to vary significantly by region, ranging from about 400 mm in the far north to as much as 3,030 mm in the coastal states, as shown in Figure 6(b). Specifically, parts of Borno, Yobe, and Katsina states are likely to receive annual rainfall totals between 400 and 650 mm. In contrast, Adamawa, Bauchi, Gombe, Jigawa, Sokoto, and Zamfara states are expected to record between 650 and 1,400 mm of rainfall. The central states, including parts of Kwara, Niger, Kogi, Plateau, Nasarawa, Benue, and the FCT, are predicted to receive between 1,150 and 1,650 mm. The inland states of the south may experience annual rainfall in the range of 1,150 to 2,400 mm, while the coastal states of Lagos, Rivers, Bayelsa, Cross River, and Akwa Ibom are anticipated to receive between 1,650 and 3,030 mm.

Dry Spell Prediction for 2026 Rainy Season

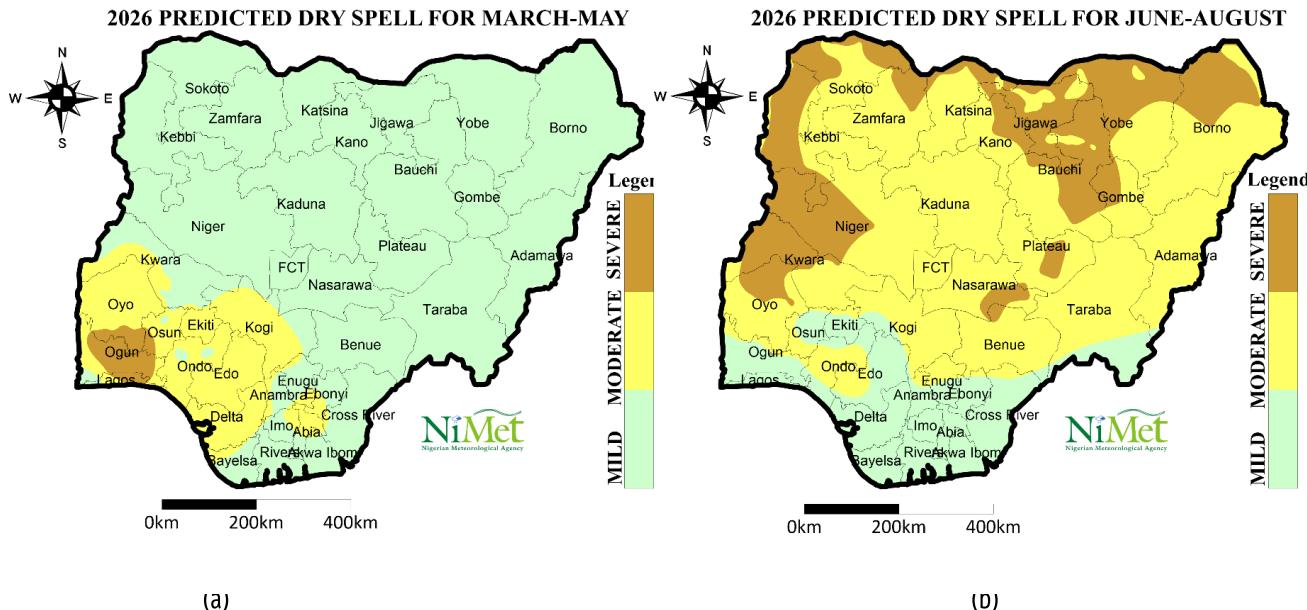


Figure 7: Predicted areas of occurrence of dry spell in March – May (a) and June - August 2026 (b)

March – May season: There is a likelihood of a severe dry spell lasting more than 15 days after the establishment of rainfall in Oyo and Ogun states.

A moderate dry spell, lasting up to 15 days, may occur in the following places:

- Southern states: Ekiti, Kogi, Osun, Ondo, Ogun, Edo, Ebonyi, Abia, Cross River, and Delta
- Central region: parts of Kogi and Kwara states

The remaining parts of the country are likely to experience a mild dry spell of less than 10 days, after the onset of the rainy season.

June - August season: A severe dry spell that may last up to 21 days is predicted for the northern and central states of Nigeria during the June-July-August season. Such prolonged dry conditions could significantly affect crop yields and water availability in these regions, potentially disrupting agricultural activities and daily life.

Table 1: Severe Dry Spell Prediction June – August 2026

State	LGA likely to be impacted by a severe dry spell (21 days and above)
Bauchi	Damban, Darazo, Gamawa, Giade, Itas/Gadau, Jamaáre, Katagum, Misau, Ningi, Shira, Warji, Zaki
Borno	Abadam, Bama, Mobbar, Kukawa, Guzamala, Gubio, Nganzai, Monguno, Marte, Ngala, Bama, Gwoza, Kaga, Mafa, Magumeri
Gombe	Nafada, Yamaltu-Deba, Dukku, Funakaye
Jigawa	Babura, Biniwa, Gwiwa, Garki, Roni, Kazaure, Gumel, Guri, Yankwashi, Kirkasama, Maigatari, Kaugama, Sule-Tankarkar, Malam Madori
Katsina	Baure, Batsari, Bindawa, Batagarawa, Daura, Charanchi, Kankia, Jibia, Rimi, Mani, Mashi, Mai' Adua, Matazu, Katsina, Dutsi, Sandamu, Ingawa, Zango
Kano	Bichi, Dambata, Makoda, Tsanyawa, Kunchi, Bagwai, Gwarzo, Tofa
Kebbi	Arewa Dandi, Aleiro, Kalgo, Bunza, Birnin Kebbi, Argungu, Augie, Jega, Maiyana
Kwara	Baruten, Kaiama, Moro, Edu, Pategi
Nasarawa	Akwanga, Lafia, Wamba, Obi
Niger	Borgu, Rijau, Kontagora, Mariga, Mashegu, Magama
Oyo	Irepo, Orepope, Saki, Olorunsogo, Atisbo, Itesiwaju, Ori Ire, Ogbomosho, Atiba, Iseyin, Kajola, Iwajowa
Plateau	Langtang North, Kanke
Sokoto	Binji, Bodinga, Dange-Shuni, Gada, Gwadabawa, Illela, Isa, Rabah, Shagari, Silame, Tambuwal, Yabo
Yobe	Barde, Bursari, Damaturu, Fika, Potiskum, Geidam, Machina, Nguru, Karasuwa, Yunusari, Yusufari, Jakusko, Tarmuwa
Zamfara	Anka, Bakura, Birnin Magaji, Bukkuyum, Bungudu, Gummi, Kaura Namoda, Shinkafi, Talata Mafara, Tsafe

2026 Little Dry Season (LDS) Prediction

The prediction shows that in 2026; the Little Dry Season is likely to commence between the 26th and 30th of July. However, signs of the LDS season may begin to manifest by mid-July. The influence of the southern subtropical high pressure is expected to become visible during this period. Cloudy atmosphere with surface temperatures below 30 degrees Celsius is likely to prevail during this period.

The dry conditions that characterise the season are expected to be quite severe in and around Lagos, Ogun, Ekiti, and parts of Oyo states. The length of the season in those places is expected to be greater than 27 days. In Ondo, parts of Kwara, and Edo states, the intensity is expected to be moderate.

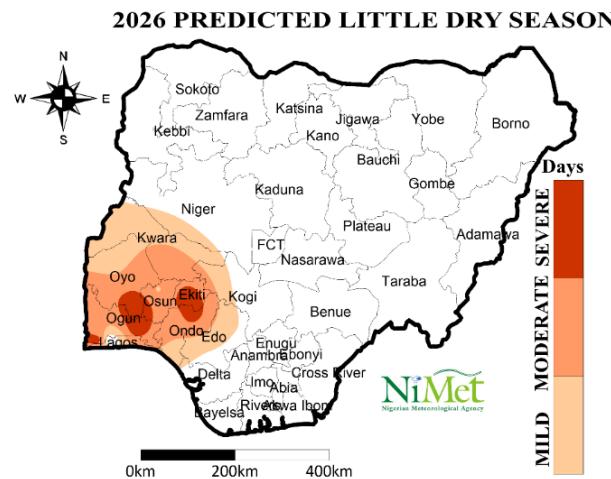


Figure 8: Predicted 2026 Little Dry Season.

Table 2: Predicted Onset Dates of 2026 Little Dry Season (LDS)

CITY	LON	LAT	START DAY
ABEOKUTA	3.33	7.2	23 rd July
ADO-EKITI	5.2	7.6	23 rd July
AKURE	5.3	7.2	24 th July
BENIN	5.6	6.33	31 st July
IBADAN	3.9	7.43	22 nd July
IJEBU-ODE	3.93	6.83	25 th July
IKEJA	3.33	6.58	23 rd July
ILORIN	4.58	8.48	28 th July
ISEYIN	3.6	7.97	29 th July
LAGOS ISLAND	3.06	6.58	30 th July
OSHOGBO	4.5	7.82	8 th August
SHAKI	3.47	8.35	23rd July

2026 Temperature Prediction

The predicted day and night-time temperatures, and the departures from long-term averages (1991-2020) for the five critical months – January, February, March, April, and May are presented in this section. The impact of temperature is mostly felt in the country during these months, i.e., the cold season occurs in January, while the hot season occurs in March, April, and May, depending on location within the country. Temperatures in parts of the country are expected to be warmer-than-normal temperatures (i.e., hotter than the average seasonal temperature).

Predicted Day-Time Temperatures Across Nigeria for January 2026

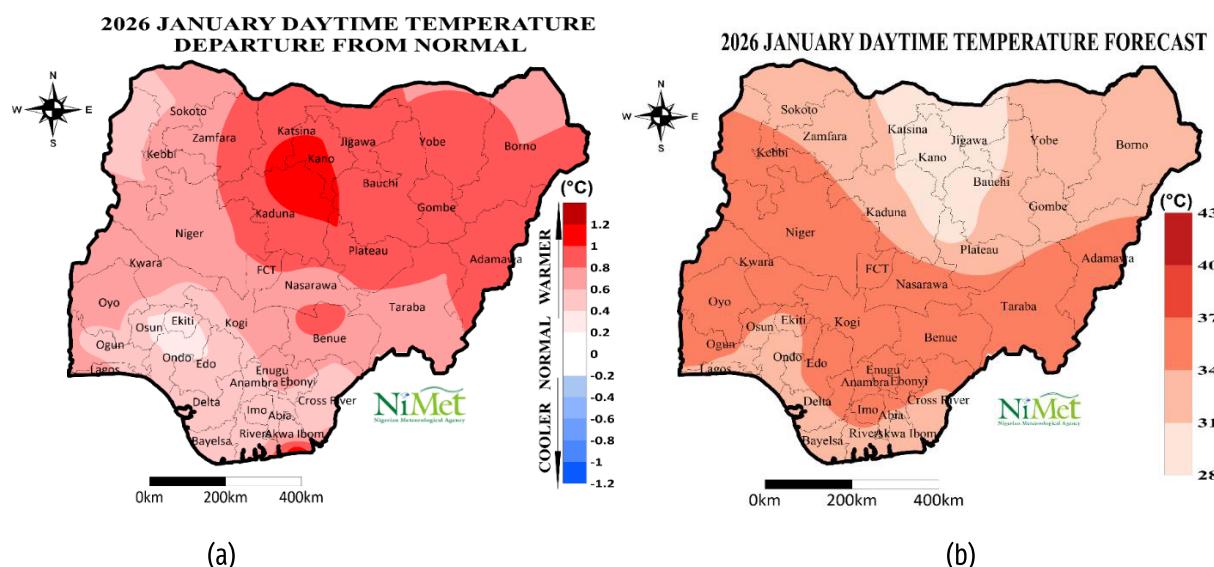


Figure 9: Predicted January 2026 Daytime temperature and departure from normal.

The analysis of January 2026 daytime temperature departure from the normal shows that most parts of the country are likely to experience warmer-than-normal daytime temperatures during the period. (See Figure 9 (a))

The daytime temperature in January 2026 is anticipated to range between 28°C and 36°C across Nigeria. The lowest daytime temperature of 28°C is expected over Plateau state, while the highest, 36°C, is likely to be observed over Nasarawa. However, most places within the north-central and southern states are expected to experience daytime temperatures in the range of 34°C to 36°C and 32°C to 34°C, respectively, while the north-western and north-eastern states are likely to record slightly lower temperatures in the range of 30°C to 35°C, respectively.

Predicted Night-Time Temperatures Across Nigeria for January 2026

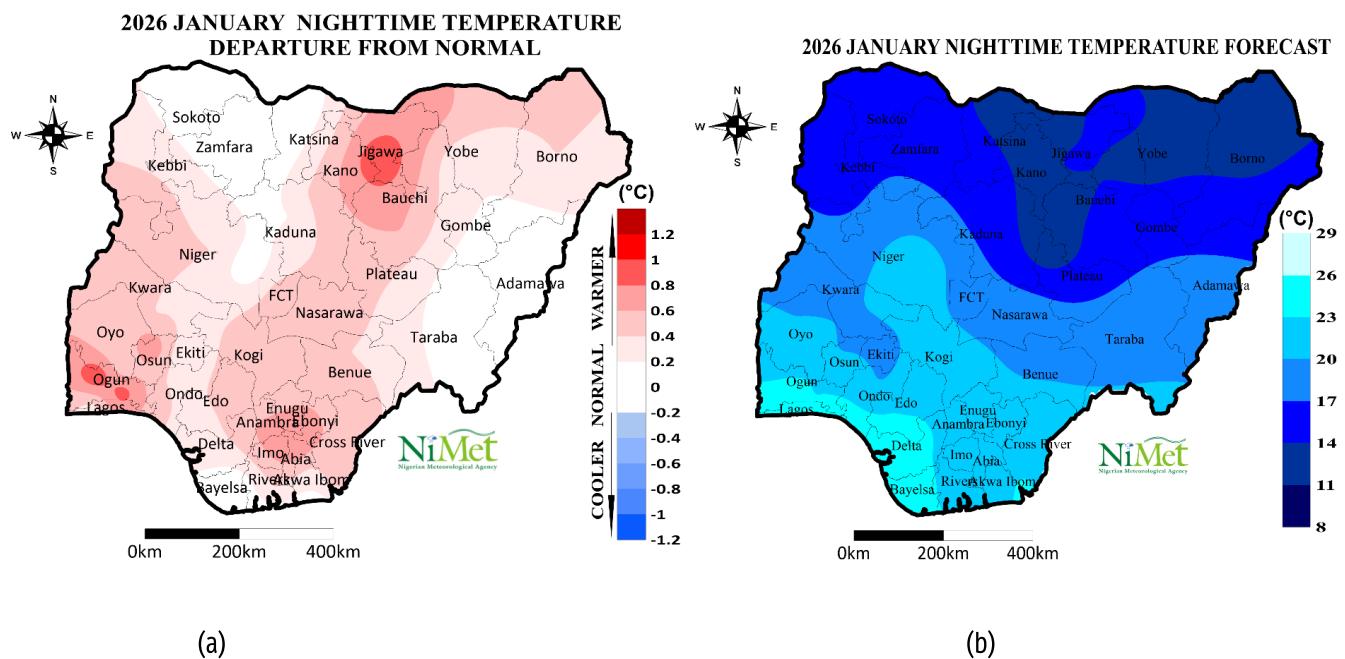


Figure 10: Predicted January 2026 Night-time temperature and departure from normal.

Most parts of the country are expected to experience warmer-than-normal nighttime temperatures in January 2026. However, parts of Sokoto, Zamfara, Taraba, Adamawa, and Bayelsa states are expected to experience normal nighttime temperatures.

The January 2026 nighttime temperature is predicted to range from 12°C to 25°C across the country, with the highest and lowest values occurring over Lagos and Jos, respectively. Parts of Bayelsa, Ekiti, Sokoto, Zamfara, FCT, Nasarawa, Benue, Taraba, and Jigawa states are expected to record between 12°C and 17°C, while Kebbi, Niger, Kogi, as well as parts of Benue, Taraba, and the coastal states are expected to record nighttime temperatures above 20°C, as shown in Figure 10.

Predicted Day-Time Temperatures Across Nigeria for February 2026

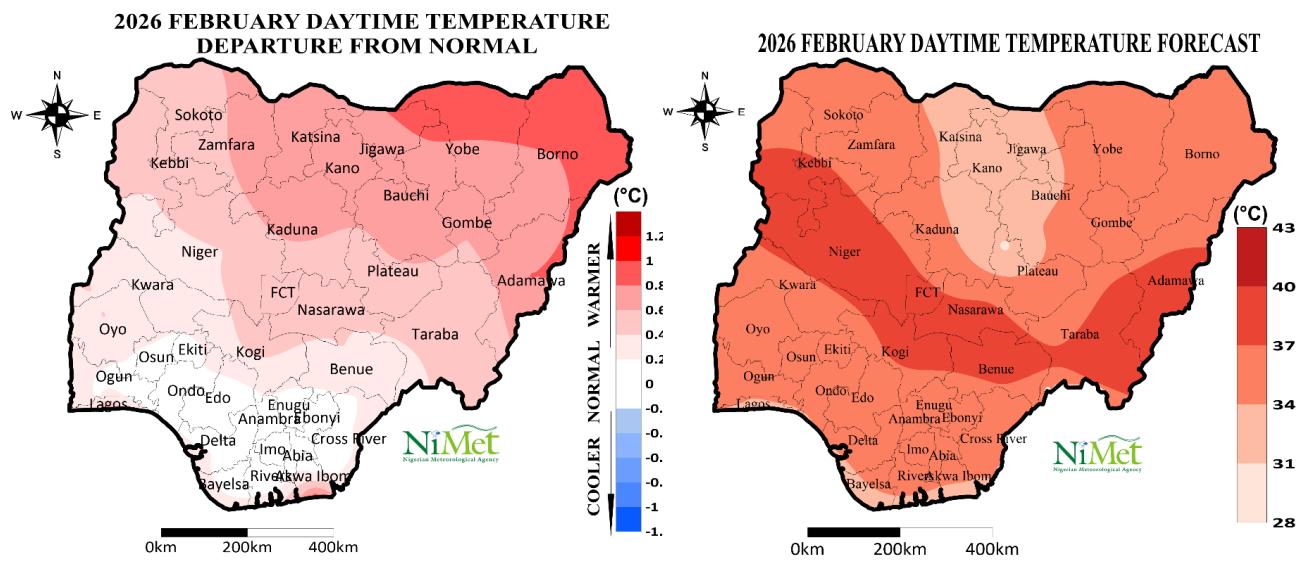


Figure 11: Predicted February 2026 Daytime temperature and departure from normal.

The daytime temperature in February 2026 is predicted to be warmer than normal in the northern and central states of Nigeria. The southern states are expected to be normal except parts of Lagos, Oyo, Osun, Akwa Ibom, Bayelsa, and Delta (Figure 11a).

The daytime temperatures for various locations across the country are expected to range between 30°C and 38°C, as shown in Figure 11b. The temperature range of 31°C to 34°C is expected in Katsina, Kano, Jigawa, Kaduna, Bauchi, and the fringes of coastal states. A temperature range of 34°C to 37°C is anticipated over Sokoto, Zamfara, Borno, Yobe, Gombe, and the southern states of the country. The central states are predicted to experience the highest daytime temperatures in February, ranging from 37°C to 40°C, while Jos and environs, in Plateau state, are predicted to have the lowest range of 28°C to 31°C.

Predicted Night-Time Temperature Across Nigeria for February 2026

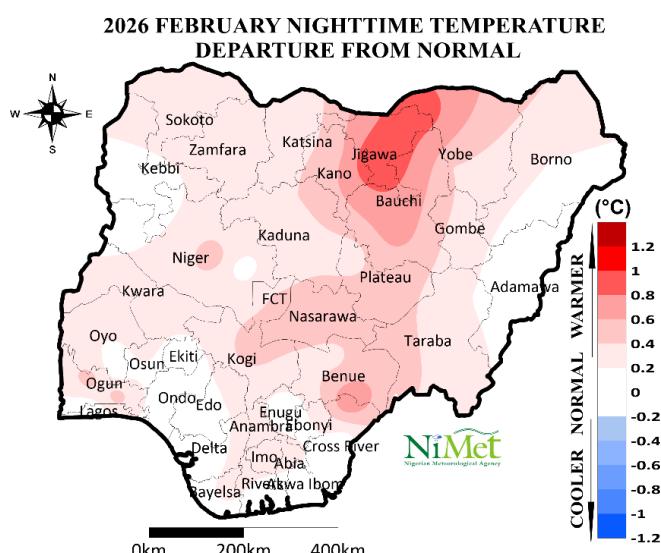


Figure 12: Predicted February 2026 Nighttime temperature and departure from normal.

The February 2026 nighttime temperature forecast indicates that most parts of the country will experience normal to warmer-than-normal conditions, with variations highlighted in Figure 12a. Notably, warmer-than-normal conditions are especially pronounced along the Jigawa–Yobe axis, where significant temperature deviations are expected.

Areas around Katsina, Kano, Jigawa, Bauchi, Yobe, and Borno states as shown in Figure 12b, are expected to experience the lowest temperatures, ranging from 14°C to 17°C. In contrast, the southern parts of the country are forecast to have the highest nighttime temperatures, between 23°C and 26°C.

Predicted Daytime Temperatures Across Nigeria for March 2026

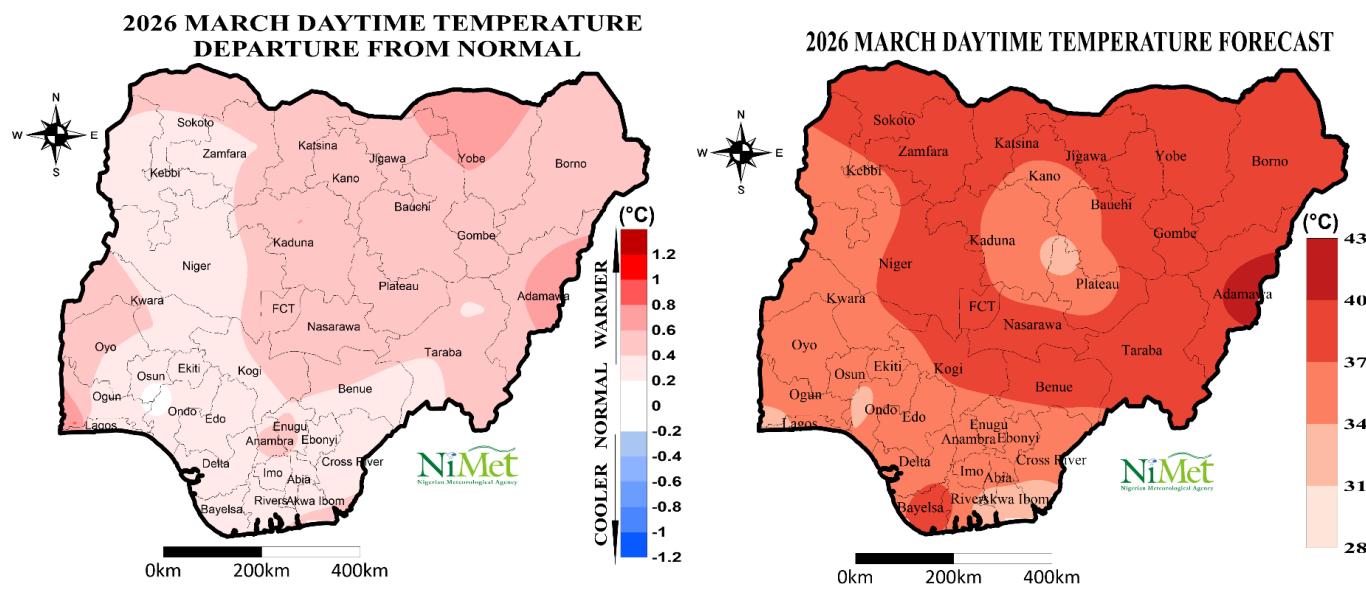
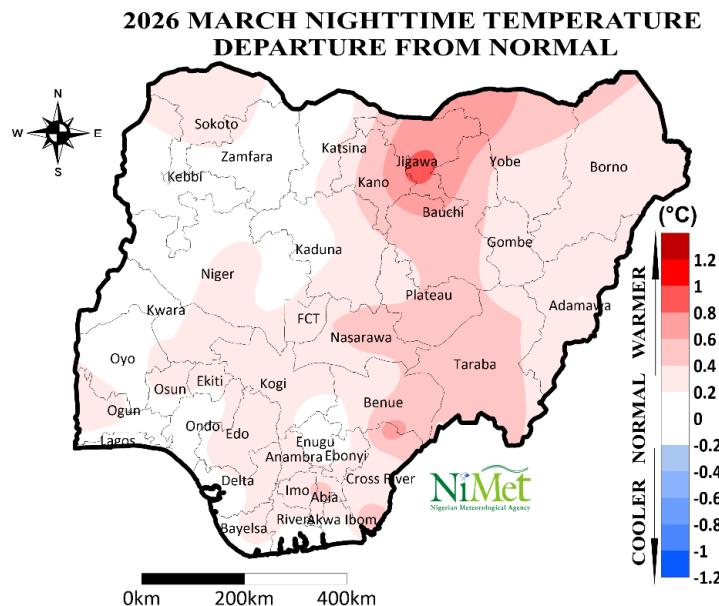
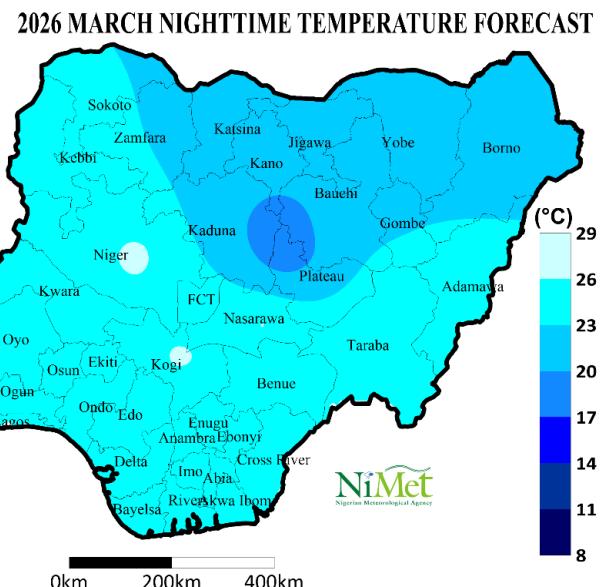



Figure 13: Predicted March 2026 Daytime temperature and departure from normal.


A comparison of the predicted March Day-time temperature with the 1991-2020 average values reveals that Most states in the country are expected to be warmer-than-normal. Parts of Yobe and Adamawa states are expected to experience the warmest daytime conditions compared with other places in Nigeria, as shown in Figure 13a.

The predicted daytime temperatures are to range from 31 to 43°C across the country. Bayelsa and most states in Northern and Central Nigeria are expected to record temperatures in the range of 37 to 40°C, while part of Kano, Kaduna, Bauchi, Plateau, Kebbi, Niger, and most of the southern states are expected to record temperatures between 34 and 37°C. The lowest daytime temperature range of 31 to 34°C is, however, predicted over Akwa-Ibom state and part of Rivers, Cross River, Abia, Ondo, Ogun, and Plateau states (Figure 13(b)).

Predicted Nighttime Temperatures Across Nigeria for March 2026

(a)

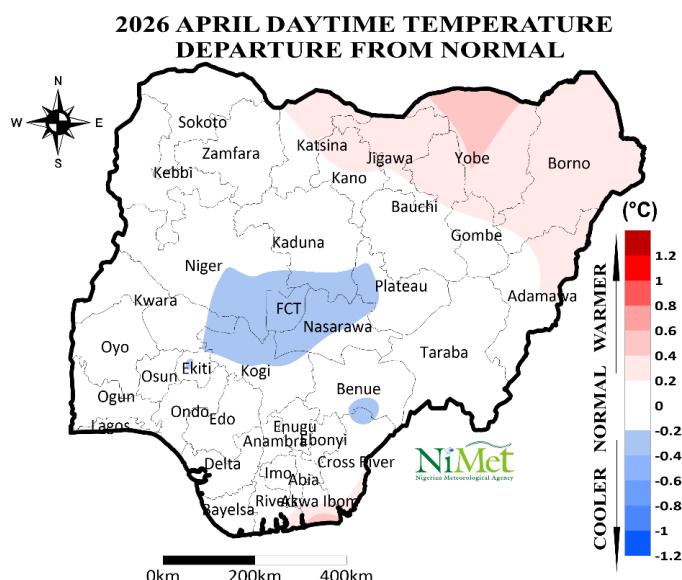
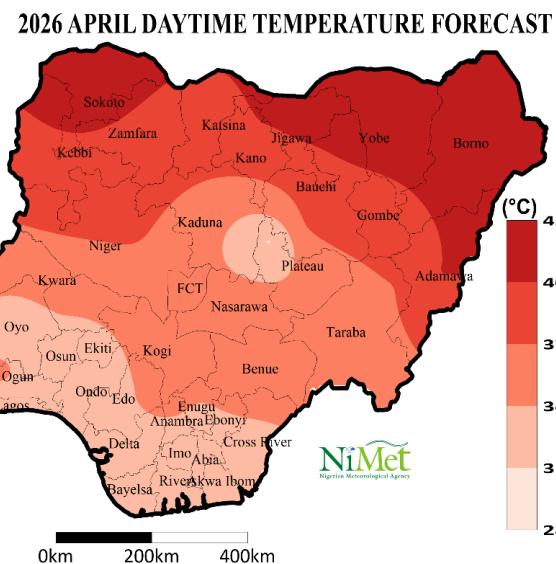

(b)

Figure 14: Predicted March 2026 Night-time temperature and departure from normal.


March nighttime temperatures in March 2026 are predicted to be warmer-than-normal in Yobe, Jigawa, Bauchi, Benue, Kebbi, Nasarawa, Kogi, Taraba, Plateau, Gombe, Borno, Kano, Katsina, Kaduna, Enugu, and Rivers states. Normal nighttime temperatures are predicted for Katsina, Zamfara, Niger, Oyo, and Akwa Ibom states. Figure 14 (a) depicts the predicted nighttime temperatures across Nigeria for March 2026.

Nighttime temperatures for March 2026 (Figure 14b) are expected to range from 17°C to 26°C across the country. Temperatures generally decrease towards the northern and northeastern states, including Kaduna, Katsina, Kano, and others, while the remaining states may record average nighttime temperatures of 20°C to 26°C.

Predicted Daytime Temperatures Across Nigeria for April 2026

(a)

(b)

Figure 15: Predicted April 2026 Daytime temperature and departure from normal.

Daytime temperatures in April 2026 are expected to be normal in most parts of the country; however, below normal daytime temperatures are anticipated over parts of Cross River, Benue, Ekiti, Kogi, Niger, Plateau, Kaduna, Nasarawa, and the Federal Capital Territory. In contrast, warmer than normal daytime temperatures are expected over parts of Katsina, Kano, Jigawa, Bauchi, Yobe, Gombe, Adamawa, Borno, Rivers, Akwa Ibom, and Cross River states as shown in Figure 15a.

Daytime temperatures in April 2026 as shown in Figure 15b, are predicted to be between 31°C and 43°C across the country. The southern states, as well as parts of Plateau, Kaduna, Bauchi, and Nasarawa, are expected to record the lowest daytime temperatures between 31°C and 34°C. The predicted highest daytime temperatures in the country during the period, which is in the range of 40°C to 43°C, is anticipated across Borno and parts of Adamawa, Yobe, Jigawa, and Sokoto states.

Predicted Nighttime Temperatures Across Nigeria for April 2026

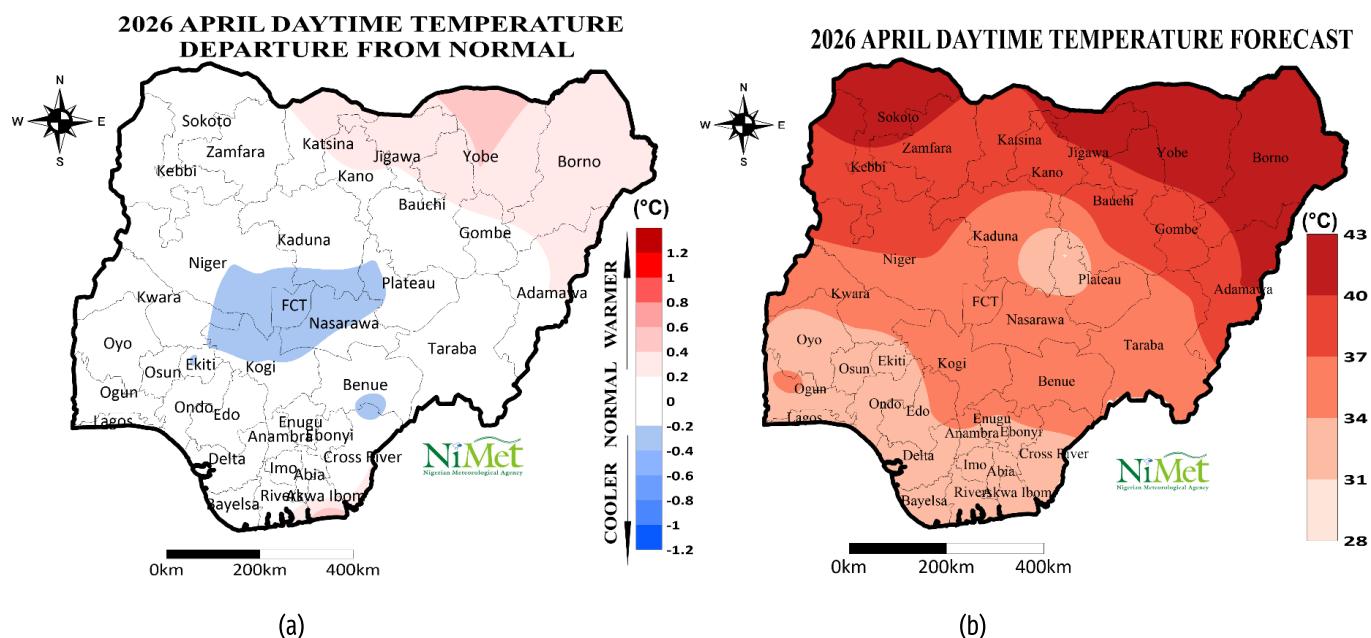
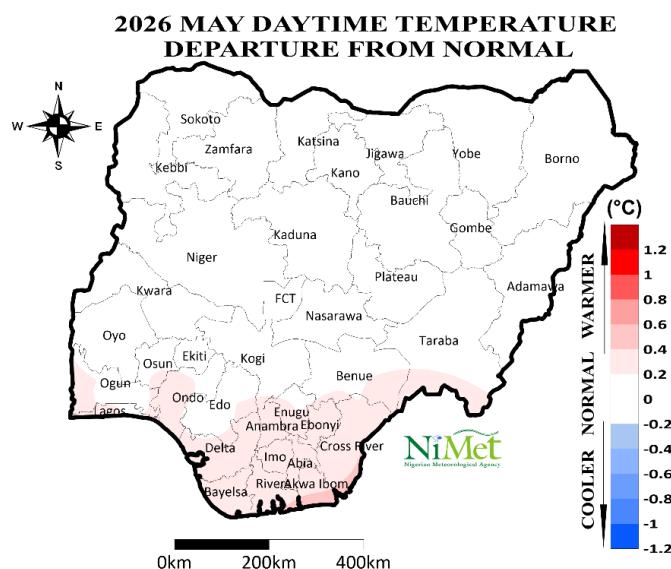
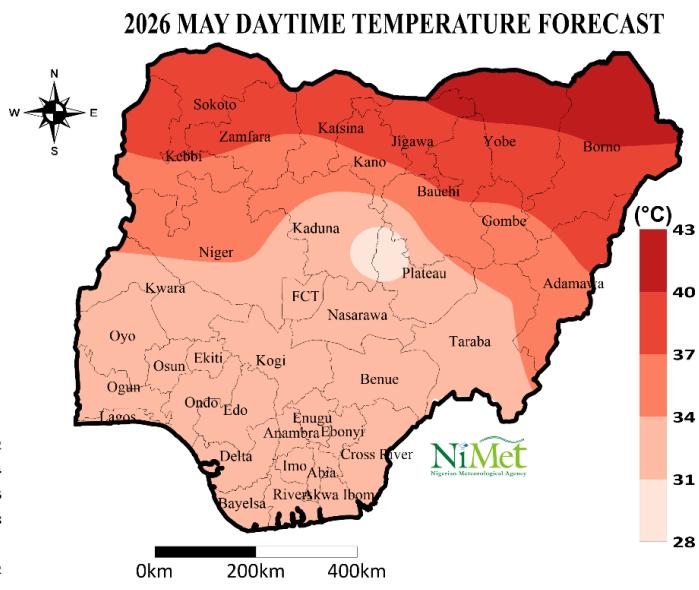



Figure 16: Predicted April 2026 Night-time temperature and departure from normal.


The forecast shows that in April 2026, nighttime temperatures are expected to be normal across the southern and central states of Nigeria. However, Jigawa, Sokoto, Zamfara, Yobe, Borno, Katsina, Kano, Kaduna, Bauchi, parts of Gombe, Adamawa, and Benue states are expected to be warmer than normal. In contrast, parts of Enugu state are anticipated to have below-normal nighttime temperatures (See Figure 16 (a)).

The nighttime temperatures across Nigeria in April 2026 are expected to range from 17°C to 26°C, with most parts of the country predicted to record temperatures between 23°C and 26°C. However, Sokoto, Zamfara, Kebbi, and Adamawa states are likely to record the highest nighttime temperatures, exceeding 26°C, while states like Plateau, Kaduna, Bauchi, Oyo, Osun, and Ekiti are predicted to have the coolest nighttime temperatures, ranging between 17°C and 23°C during the period, as shown in Figure 16b.

Predicted Day-Time Temperatures Across Nigeria in May 2026

(a)

(b)

Figure 17: Predicted May 2026 Daytime temperature and Departure from normal.

Normal daytime temperatures are predicted over most parts of the country in May 2026. However, warmer-than-normal daytime temperatures are predicted for Lagos, Ondo, Delta, Bayelsa, Enugu, Anambra, Ebonyi, Imo, Abia, Rivers, Akwa Ibom, and Cross River states during the period as shown in Figure 17a.

The daytime temperatures for May 2026, as shown in Figure 17b, are predicted to range from 28°C to over 40°C across the country. The lowest daytime temperatures predicted are between 28°C and 31°C, and are anticipated over Plateau state, while Yobe and Borno states are likely to experience temperatures exceeding 40°C during the period.

Predicted Nighttime Temperatures Across Nigeria for May 2026

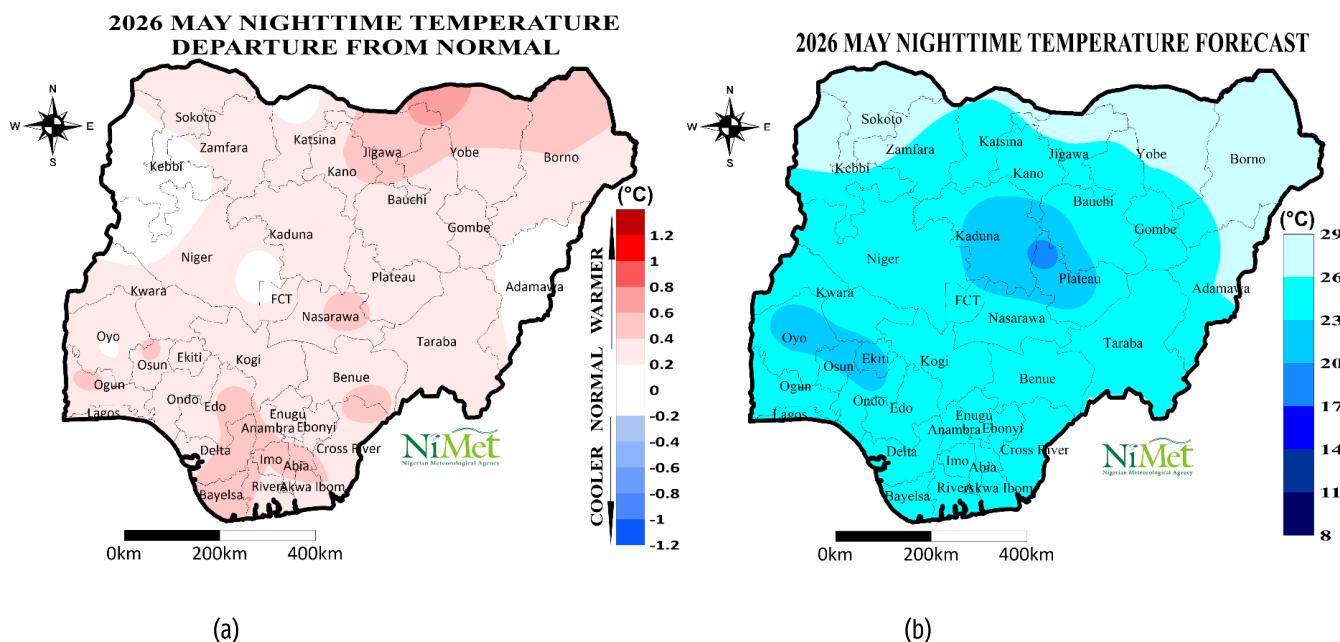


Figure 18: Predicted May 2026 Night-time temperature and Departure from normal.

Figure 18a shows the predicted minimum (nighttime) temperatures across Nigeria for May 2026. The nighttime temperatures ranging from 18°C to 27°C is expected across the country during the period.

The lowest nighttime temperatures of 18°C to 20°C are expected over parts of Kaduna, Plateau, Oyo, Ekiti, Osun, and Ondo States. The highest nighttime temperature of 26 °C or above is anticipated over some parts of the northwest and northeast (Figure 18b).

Climate and Health

Weather has profound direct and indirect impacts on human health. For instance, people are susceptible to heat stress under hot and humid weather conditions. Exposure to dusty weather could worsen respiratory tract diseases such as asthma and chronic bronchitis. Dust particles in the atmosphere can also irritate the eyes and nose. Some weather conditions also favour the outbreak and spread of some diseases. The outbreak and spread of meningitis are more rampant when the weather is dry, dusty, and hot. Female anopheles mosquitoes, which are the vectors of malaria parasites, breed well under moderately warm temperatures, rainfall, and high relative humidity. Malaria is therefore prevalent under such weather conditions. Temperature, rainfall, relative humidity, and dust concentration in the atmosphere are therefore used to predict the likelihood of outbreak and severity of malaria and meningitis.

Malaria and meningitis are common public health challenges in Nigeria. According to the World Malaria Report 2024, Nigeria carries the largest share of the global malaria burden, with an estimated 25.9% of global cases and 30.9% of global deaths in 2023. This represents the highest percentage for any country, and Nigeria accounts for an estimated 55% of the malaria cases in West Africa².

According to the International Research Institute for Climate and Society (IRI), seasonal climatic suitability for malaria transmission is defined as the chance of precipitation accumulation greater than 80 mm average temperature between 18°C and 32°C, and relative humidity greater than 60%. The combined values of these climate variables at a given location or region are indication of the lower limit for potential malaria transmission in the area. This implies that once these conditions are met, malaria cases are likely to occur in the area or region.

The predicted rainfall, temperature and relative humidity are used in determining the degree of vigilance for malaria. When rainfall is above 80 mm, the temperature is between 25°C and 32°C, and the relative humidity is greater than 80%, the region is at high risk of malaria prevalence and is placed under High Vigilance. When the temperature is between 20°C and 25°C, relative humidity is between 70% and 80% and rainfall is above 80 mm, then Moderate Vigilance is advised. Low vigilance for malaria is recommended for any location or region if the temperature ranges from 18°C to 20°C, relative humidity is between 60% and 70%, and rainfall is above 80 mm. No Vigilance is recommended when the temperature is lower than 18°C or above 32°C, relative humidity is lower than 60%, and rainfall is below 30 mm. This is because these climatic conditions are not conducive to mosquitoes to reproduce and multiply.

² World Health Organization (2024). *World Malaria Report 2024*

Figure 19: Anopheles mosquito

(Source : <https://www.cdc.gov/mosquitoes/about/life-cycle-of-anopheles-mosquitoes.html>)

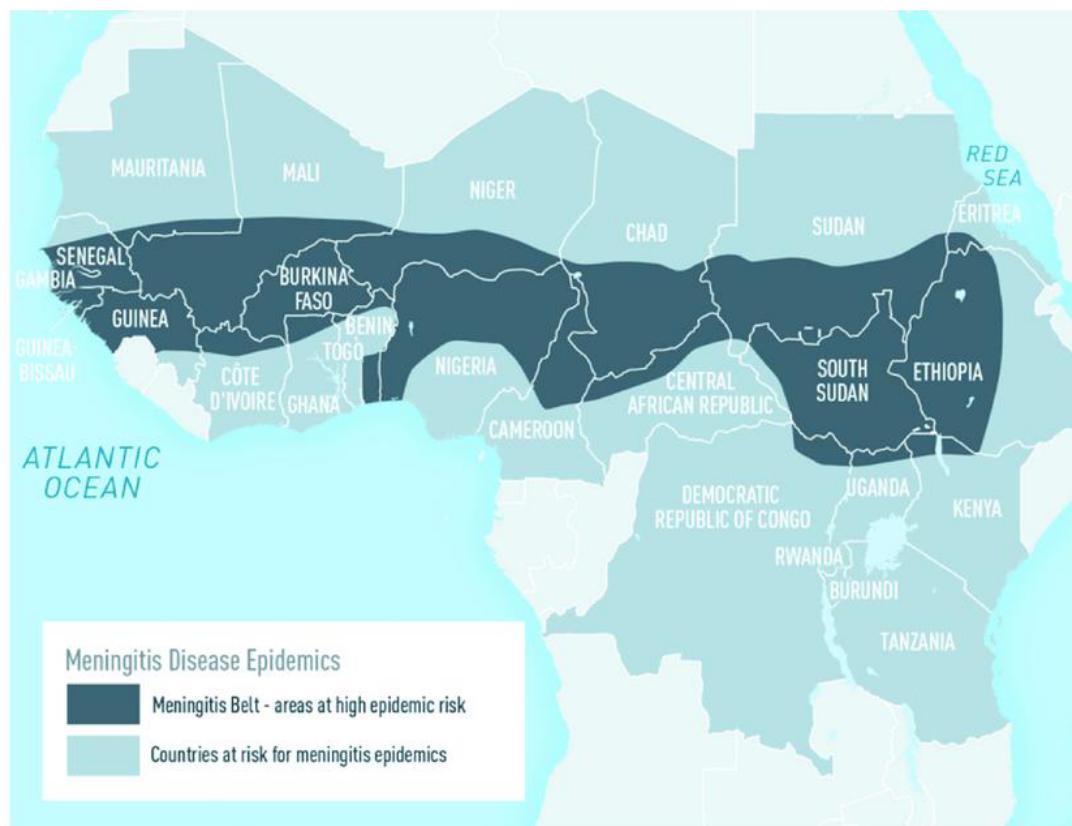


Figure 20: Meningitis belt of Africa

(Source: https://www.researchgate.net/figure/Areas-with-frequent-epidemics-of-meningococcal-meningitis-Disease-data-source-World-fig1_360160616)

Meningitis is a common and prevalent disease in Nigeria and can affect people of all ages. It is a devastating disease that still poses a health risk. With seasonal fluctuations, the disease can spread from small clusters to widespread epidemics over a wider region. Figure 20 shows the meningitis belt in Africa. This is a region of sub-Saharan Africa that extends from Senegal in West Africa to Ethiopia in the East. It has the highest incidence of meningococcal meningitis. Meningitis is a seasonal disease that spreads more easily during dry, dusty weather. Meningitis can occur in every part of Nigeria. However, the 19 northern states, the Federal Capital Territory, and a few southern states, including Kwara, Oyo, Ogun, Ondo, Osun, and Lagos, are particularly vulnerable due to their location in the meningitis belt.

Weather Threshold for Outbreak of Meningitis

Outbreak of meningitis disease is expected when relative humidity is less than or equal to 40%, air temperature of about 20°C, and dust concentration is greater than or equal to 200 $\mu\text{g}/\text{m}^3$. The probability of the meningitis outbreak increases as relative humidity decreases, while temperature and dust concentration increase.

For High Vigilance, relative humidity of less than 20%, a temperature within the range of 25°C to 32°C, and atmospheric concentration of dust between 500 and 2000 µg/m³ are applied. For Moderate Vigilance, relative humidity within the range of 20 to 40%, temperature of 20°C to 25 °C, and dust concentration of 200 to 500 µg/m³ are indicative. Low Vigilance is prescribed when relative humidity is above 40%, temperature below 25°C, and dust concentration is between 50 and 200 µg/m³, while No Vigilance is required if there is a significant amount of rainfall.

DISEASE VIGILANCE

Malaria Vigilance for January 2026

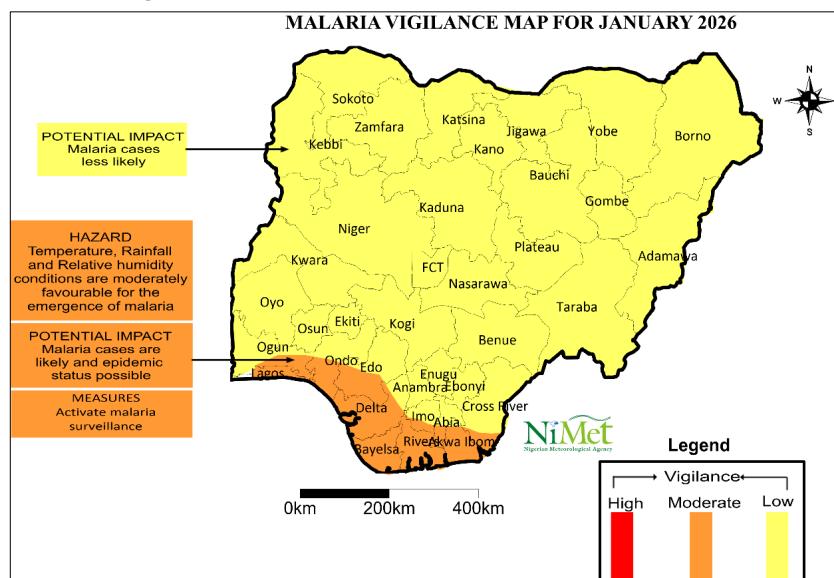


Figure 21: January 2026 Malaria Vigilance

The predicted temperature, rainfall, and relative humidity conditions in January 2026 suggest a moderate prospect of malaria incidence in the coastal states of the country; hence, **moderate vigilance** is recommended for those areas. The predicted weather conditions in most other parts of the country (the inland of the south, central, and northern states) are not conducive to mosquitoes breeding. In view of this, **low vigilance** is advised in those areas.

Malaria Vigilance for February 2026

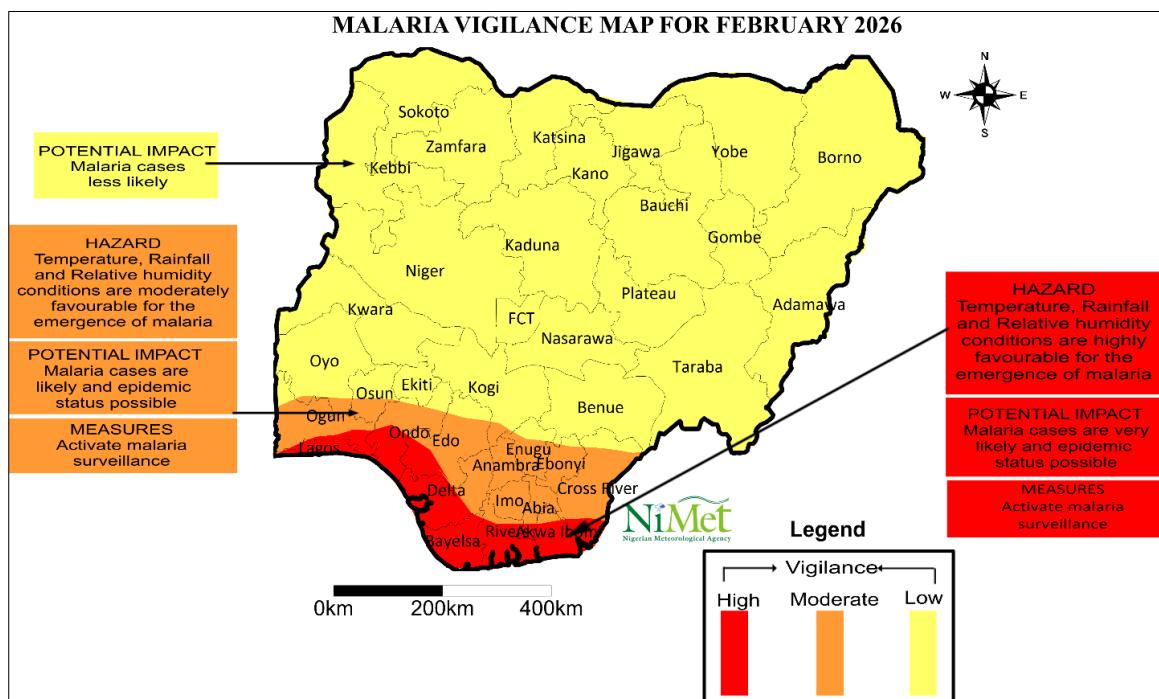


Figure 22: February 2026 Malaria Vigilance

Based on the predicted climatic conditions, Cross River, Akwa Ibom, Rivers, Bayelsa, Delta, Ondo, and Lagos states have high prospects of the emergence of malaria cases in February 2026. Consequently, **high malaria vigilance** is recommended for these states. **Moderate vigilance** is advised over the inland areas of the south. The predicted climatic conditions for the central and northern states favour a low occurrence of malaria. Therefore, **low vigilance** is recommended for these places (Figure 22).

Malaria Vigilance for March 2026

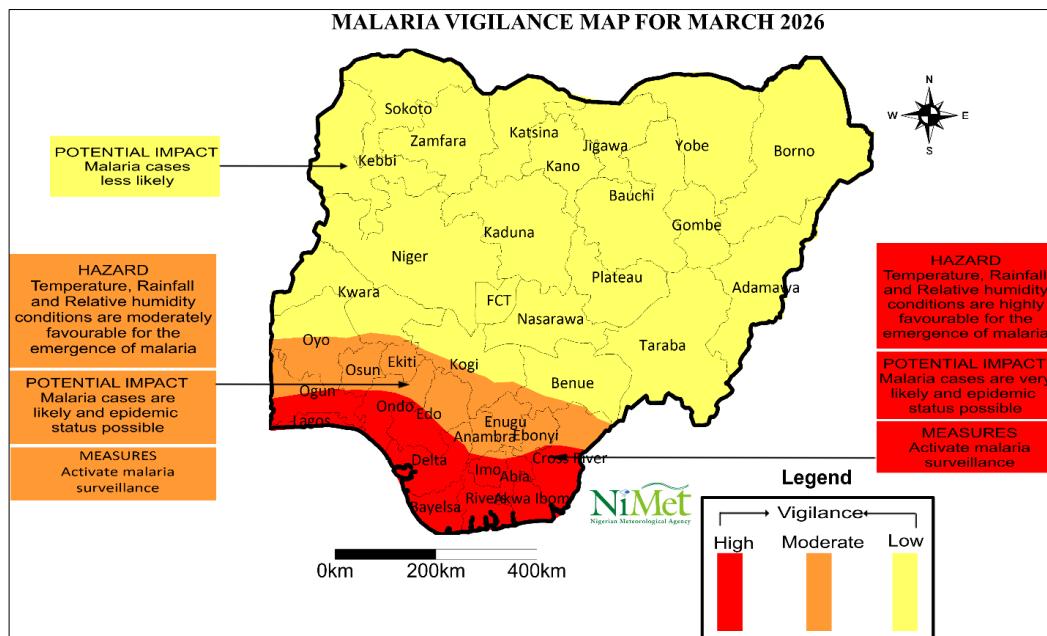


Figure 23: March 2026 Malaria Vigilance

The predicted climatic conditions for March 2026 suggest high prospects of malaria incidences in the southern parts of the country. Consequently, **High Vigilance** for malaria is recommended in those areas. **Moderate Vigilance** is advised over parts of Oyo, Ogun, Osun, Edo, Ondo, Ekiti, Kogi, Anambra, Ebonyi, Enugu, Cross River, and Benue states. **Low Vigilance** is prescribed over the northern states. (Figure 23).

Malaria Vigilance for April 2026

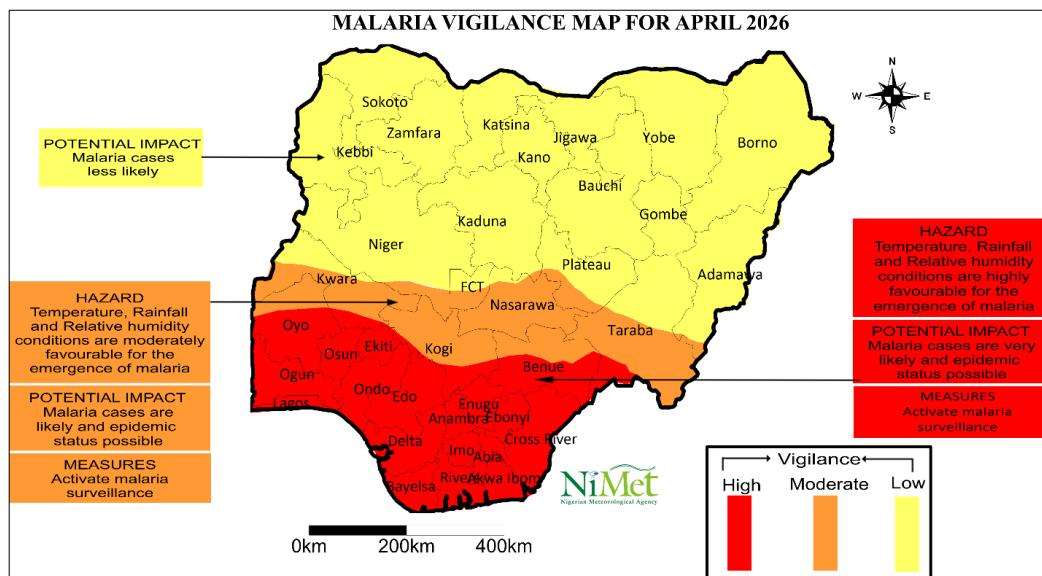


Figure 24: April 2026 Malaria Vigilance

The April 2026 climate prediction suggests a high probability of the emergence of malaria cases over parts of Kwara, Kogi, Benue, Taraba, and the southern states. Consequently, **High Vigilance** is recommended in these states. **Moderate Vigilance** is advised over parts of the central states of Nigeria, including Kwara, Kogi, Benue, Plateau, Nasarawa, and Niger states, as well as the Federal Capital Territory (FCT). **Low vigilance** is prescribed over vast portions of the country, covering the northern and central states. (See Figure 24).

Malaria Vigilance for May 2026

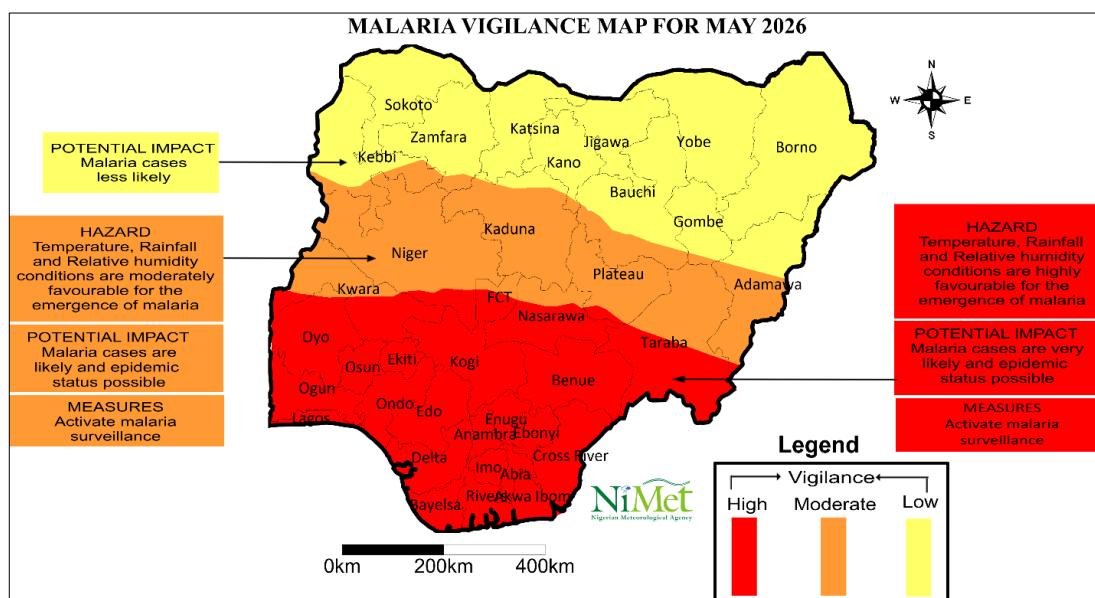


Figure 25: May 2026 Malaria Vigilance

With the northward progression of rainfall, all the southern, and parts of the central states have high chances of occurrence of malaria cases in May 2026. Considering this fact, **High Vigilance** is recommended over those areas, **Moderate Vigilance** over Kebbi, Zamfara, Kaduna, Bauchi, and Adamawa states, while **Low Vigilance** is, advised over the rest of the northern states during the period.

Meningitis Vigilance

Relative humidity, dust concentration in the atmosphere, and mean air temperatures determine the probability of occurrence, and hence the vigilance threshold for meningitis. NiMet predicts the probability of meningitis and its geographical distribution across Nigeria using these three variables.

Meningitis vigilance for January 2026

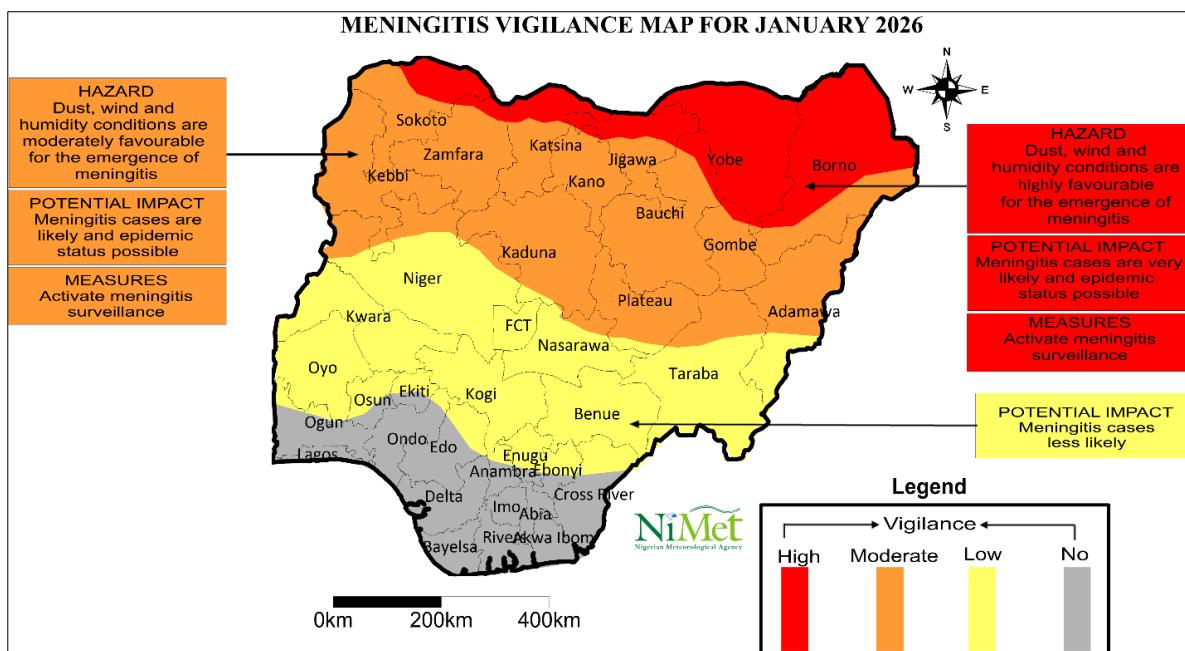


Figure 26: January 2026 Meningitis Vigilance

The predicted climatic conditions for January 2026 indicate a high probability of outbreaks of meningitis cases in parts of Borno, Yobe, Bauchi, Jigawa, Kano, Katsina, Zamfara, and Sokoto states during the period. **High Vigilance** for meningitis is therefore prescribed for these states.

Moderate Vigilance is advised for parts of Niger, Nasarawa, and Plateau in the central zone of the country. Slim prospects of meningitis cases are expected over the inland states of the south, Kwara, Benue, and Kogi states, as well as the FCT. **Low Vigilance** is therefore recommended for these places. The occurrence of meningitis in January 2026 is unlikely in the coastal areas. Therefore, no vigilance is advised as the expected weather for the areas does not favour meningitis outbreak. Figure 26.

Meningitis Vigilance for February 2026

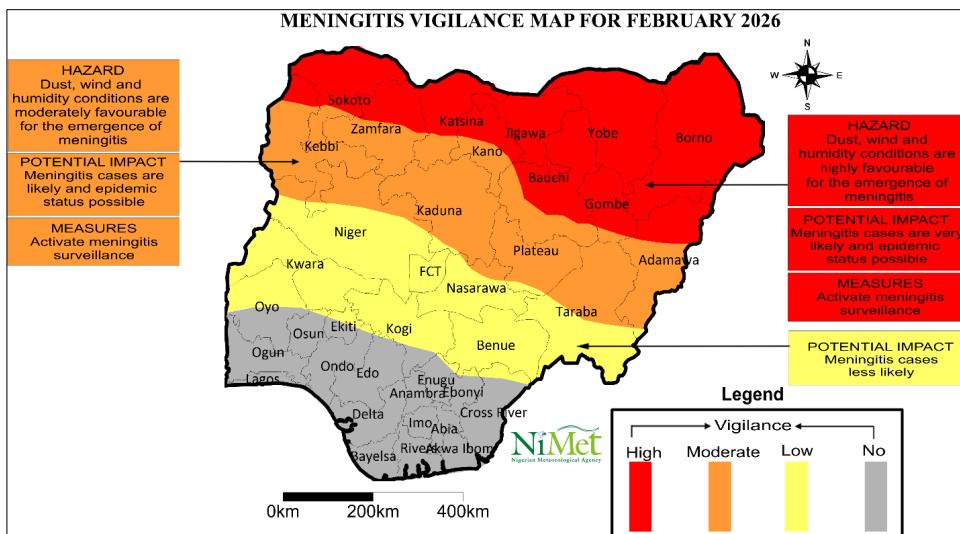


Figure 27: February 2026 Meningitis Vigilance

The predicted weather conditions for the northern states in February 2026 are highly favourable for the outbreak of meningitis in some northern states. **High vigilance** is therefore advised in such places. In some other places in the region, the predicted climatic conditions are moderately favourable for the emergence of meningitis during the period. **Moderate meningitis vigilance** is therefore recommended for those areas. Low meningitis vigilance is prescribed for Oyo, Osun, Ekiti, Kogi, Cross River, Benue, Kwara states, and the FCT. The emergence of meningitis is unlikely in the remaining parts of the south; therefore, no vigilance is recommended for those parts of the country. See Figure 27.

Meningitis Vigilance Prediction for March 2026

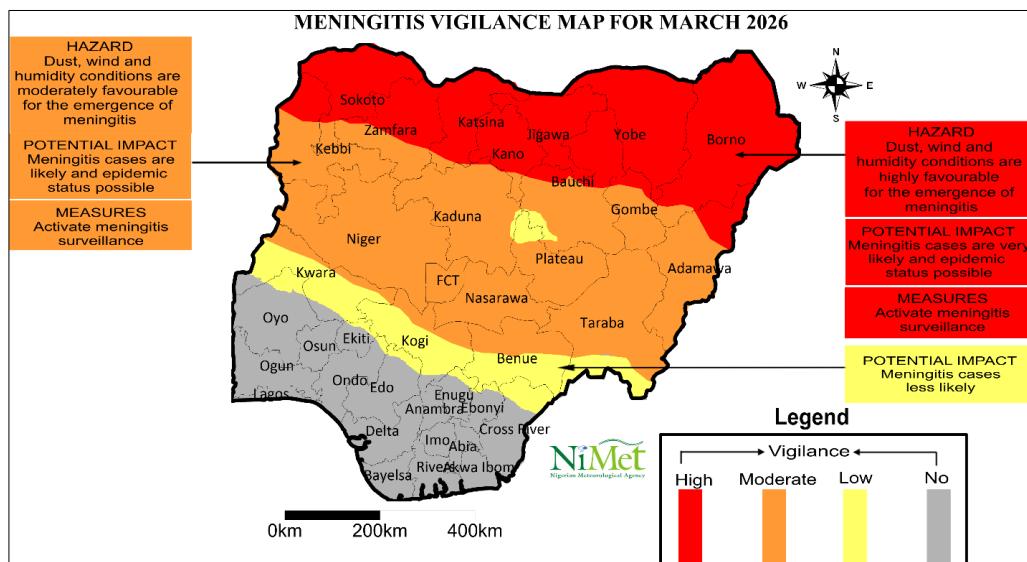


Figure 28: March 2026 Meningitis Vigilance

The predicted climatic conditions (relative humidity, temperature, and atmospheric dust concentration) for March 2026 indicate a high probability of meningitis cases over Sokoto, Zamfara, Kebbi, Katsina, Kano, Jigawa, Adamawa, Gombe, Bauchi, Yobe, and Borno states. **High Meningitis** vigilance is therefore prescribed for these states. **Moderate Vigilance** is advised for the central states of Nigeria in March 2026. **Low Vigilance** is recommended for Plateau, Oyo, Cross River, Edo, Ekiti, and Enugu states, while **No Vigilance** is advised for the rest of the country, as the expected climatic conditions for the region do not favour meningitis outbreak Figure 28.

Meningitis Vigilance Prediction for April 2026

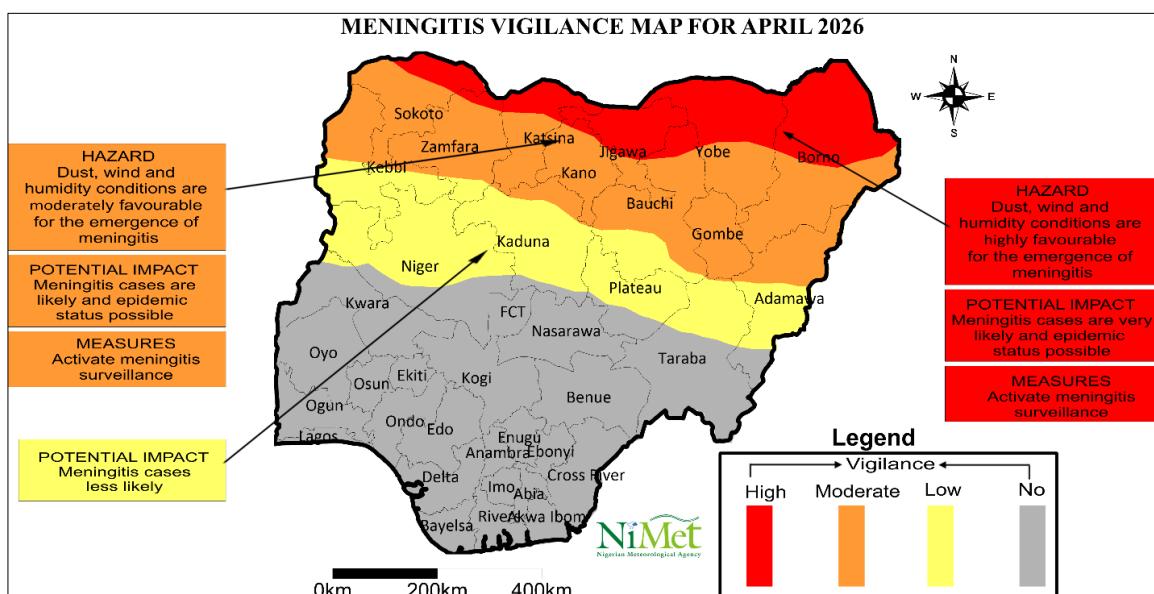


Figure 29: April 2026 Meningitis Vigilance

Based on the predicted climatic conditions for April 2026, the occurrence of meningitis cases is very likely over the extreme northern fringes of the country in April 2026. **High Meningitis** vigilance is prescribed for the northern borders of the country. **Moderate Vigilance** is advised over some parts of the northern states of Kebbi, Kaduna, Gombe, and Adamawa state, while **Low Vigilance** is recommended for parts of Niger, Plateau, and Taraba. **No Vigilance** is advised over most parts of the central and southern states. (See Figure 29).

Meningitis Vigilance for May 2026

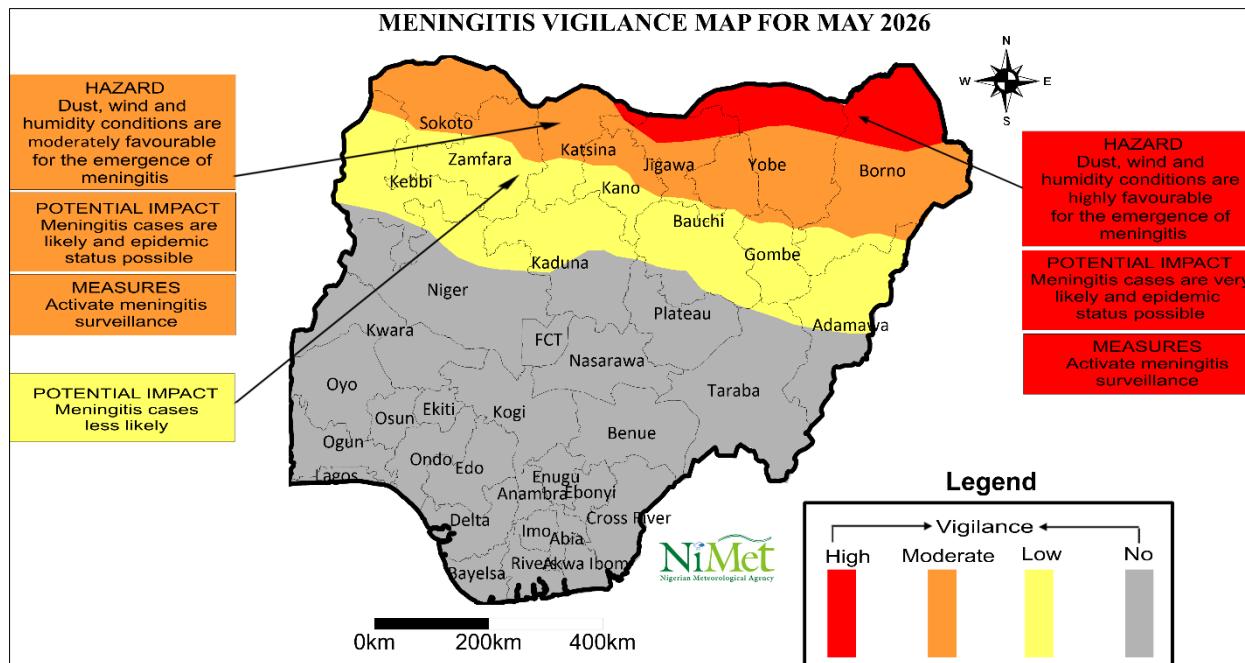


Figure 30: May 2026 Meningitis Vigilance

For May 2026, **High Vigilance** is recommended for Borno, Yobe, Jigawa, and Katsina as shown in Figure 30 based on the predicted climate conditions. In parts of Kano, Gombe, Bauchi, Kano, Zamfara, Sokoto, and Kebbi, **Moderate Vigilance** is prescribed, while **Low Vigilance** is prescribed for parts of Niger, Kaduna, Taraba, and Adamawa states. **No Vigilance** is advised over most parts of the central and southern states, as the expected climatic conditions for the region do not favour meningitis outbreaks.

Chapter Three

Implications of the 2026 Seasonal Climate Prediction for Some Key Economic Sectors

Weather affects every sector of the economy and all aspects of human activities. The predicted conditions of the climate in Nigeria for 2026 will affect various sectors of the economy in different ways and to different extents, and the response by operators will vary from one sector to another.

Aviation

Figure 31: Aeroplane flying in turbulence

The 2026 Seasonal Climate Prediction indicates that most parts of Nigeria will experience normal to warmer-than-normal temperatures. These warmer temperatures have significant operational and safety implications for aviation. Warmer temperatures increase convective activity, which can cause Clear Air Turbulence (CAT) posing risks of discomfort or injury to both passengers and crew members.

Rainfall patterns for 2026 are expected to be predominantly normal across the country; however, above-normal rainfall is anticipated in areas such as Kebbi, Kaduna, Enugu, Cross River, Abia, Ebonyi and the FCT. High intensity rainfall is also expected early in the year, prior to the full

establishment of the rainy season. The pre-onset, onset and cessation periods are particularly important for aviation because they are typically associated with severe thunderstorms, strong lightning, gusty winds, windshear, heavy rainfall, localized flash flooding, and visibility reduction. These hazardous weather elements pose substantial risks both at ground level and at higher altitudes and are among the leading contributors to aviation accidents worldwide. Increased bird activity during these periods raises the risk of bird strikes which can significantly affect aircraft safety and engine performance.

Furthermore, atmospheric phenomena such as dust haze during the dry season, as well as fog and mist, which are products of water droplets in the atmosphere, pose challenges by reducing visibility, limiting safe take-off and landing operations, which can lead to disruption of flight schedules.

Overall, weather remains one of the most critical factors influencing aviation safety, efficiency, and operational reliability. From visibility reduction to turbulence, thunderstorms, and other weather events, meteorological conditions shape nearly every aspect of flight operations from take-off to landing and even ground operations. Understanding how weather affects aviation is therefore essential for enhancing safety, improving planning decisions, reducing delays, and strengthening the resilience of the aviation industry. NiMet, in line with ICAO, WMO and NCAA guidelines and recommended practices provides weather and climate predictions to support strategic planning within the aviation sector.

Table 3: Implications of the prediction for aviation

Prediction	Implications/Effects
1 Pre-onset/onset activities.	<ul style="list-style-type: none"> Wind shear and turbulence during take-off and landing which causes discomfort to passengers and crew members. Strong winds which causes damage to parked aircrafts, infrastructures and affect safety of navigational aids. Increased occurrence of thunderstorms and lightning affecting flight safety as well as causing flight delays and cancellations.
2 Above normal rainfall amount.	<ul style="list-style-type: none"> Excess water on runways which causes aquaplaning (less friction/reduction in breaking action) and runway excursion. Reduced Visibility which leads to delays and flight cancellations. High intensity rainfall leading to reduction in payload to support lifting during take-off. This can lead to reduction of revenue for airlines.
3 Warmer-than-normal Temperature values.	<ul style="list-style-type: none"> Strong temperature inversions, which causes wind shear and leads to loss of control and skidding of aircraft. Increased stress on aircraft engine performance and fuel consumption leading to high cost of operation.

- Reduction in air density causing longer take-off distances and reduced climb performance particularly for fully loaded aircrafts.

Advisories

- Pilots should ensure they attend flight briefings before each flight operation as part of ICAO compliance with safety.
- Pilots and crew members should ensure they get the up-to-date weather information (flight Folder) before embarking on any flight.
- Airliners and airport management should endeavour to heed all NiMet's warnings (such as SIGMET, Wind shear, and Aerodrome warnings) at all times.
- Relevant authorities are advised to conduct regular runway inspections to detect cracking, softening, or surface deformation, especially during peak temperature periods.
- Airlines should strictly adhere to regulations and all Standard and Recommended Practices (SARPs) to ensure the safety of all airspace users and aerodrome operations.
- Proper drainage and runway surface friction management during periods of increased rainfall should be carried out by the relevant authorities.
- Aerodrome authorities are advised to intensify bird activity monitoring, especially during the onset and cessation periods, to minimise the risk of bird strikes.
- Airlines should ensure implementation of contingency measures for adverse weather events in line with the Standard and Recommended Practices.
- Light aircraft and helicopter operators should always ensure they heed NiMet's warnings and advisories.
- Aerodrome safety authorities should ensure strict adherence to standard instrument flight procedures during periods of low visibility.
- Ground crews must follow low visibility Standard Operating Procedures (SOPs) for taxiing, towing, and vehicle movements to prevent accidents in the aerodrome.

Agriculture

In 2026, significant rainfall events are likely to come before the onset of the rainy season (Pre-Onset). The onset of the growing season in 2026 is predicted to be normal to earlier than normal in most parts of the country. However, a delayed onset date is expected in the northern part of Borno State. Normal cessation dates are predicted in most parts of the country. Most parts of Nigeria are expected to experience predominantly normal rainfall, with a few areas likely to receive below-normal or above-normal rainfall. Therefore, it is recommended that farmers in the country take the following preventative measures for crop production during the growing season.

Crop Production

Figure 32: Crop Farm

Advisories

- Farmers should adhere to the predicted onset dates before planting to avoid crop failure from false onset.
- Where the onset is delayed, farmers are advised to use drought-tolerant and early maturing varieties.
- Due to expected early onset in the southern parts of the country, farmers should plant timely to ensure crops utilize the full growing season, which reduces the chances of dry spells affecting grain filling.
- Adopt water conservation techniques (alternative water source) such as mulching, water harvesting, tied ridge, organic fertilizer, and supplementary irrigation (borehole).
- Areas predicted to have dry spells around July and August should use drought-tolerant varieties (certified seeds) and adopt soil water conservation technologies such as mulching, water harvesting, and supplementary irrigation.

- Follow the recommended **split application** for nitrogen to avoid leaching.
- Construct ridges, furrows, or drainage channels to prevent waterlogging during moderate to peak rainfall periods. Raised beds are also recommended to protect root crops from prolonged soil saturation.
- Farmers should engage in climate-smart agriculture practices and home-gardening to adapt to climate change.
- Farmers should engage in Rainwater harvesting for both areas that will experience below and above normal rainfall.

Implications of the 2026 Temperature Forecast on Agricultural Production

Crop

High temperatures, particularly during periods of dry spells, can cause **heat stress** in crops, leading to reduced photosynthesis, stunted growth, and lower yields. They increase **evapotranspiration**, resulting in higher water demand and rapid soil moisture loss. Heat negatively affects **flowering and pollination**, causing poor grain or fruit set. It also accelerates crop maturity, producing **smaller grains and reduced quality**. High temperatures encourage **pests, diseases, and weed proliferation**, and can cause **leaf scorching, sunburn, and tissue damage**. In severe cases, heat combined with drought leads to **crop failure**, reduced seed quality, and major economic losses for farmers.

Advisories

- Farmers should plant early maturing and drought-tolerant varieties.
- Farmers should adjust planting dates to avoid peak heat.
- Use mulching and conservation agriculture to conserve soil moisture.
- Farmers are encouraged to practice agroforestry or shade management.
- Employ supplemental irrigation to complement rainfall shortages.
- Delay planting activities for crops that are not tolerant to dry spells.

Implications of the 2026 temperature forecast on Livestock Production

Livestock production in arid and semi-arid regions is especially susceptible to erratic rainfall and rising temperatures. These environmental changes directly impact pasture growth, water availability, animal health, and, ultimately, the productivity and livelihoods of farmers and pastoralists. The challenges posed by climate variability underscore the need for accessible information and proactive planning. Seasonal climate predictions (SCPs) serve as an invaluable

tool to manage these risks and turn potential losses into manageable challenges, thus fundamentally altering the economic landscape for pastoralists and farmers.

Access to timely and accurate climate information helps mitigate the significant losses caused by climate variability, such as drought, floods, and heat stress, which currently impair productivity and incomes. Access to weather information on quantity and onset/cessation of rainfall allows for better planning of feed and water resources and ensure optimal resource allocation.

Armed with predictions, pastoralists can make climate smart decisions to address herds sizes, migration patterns, and the timing of sales. Selling animals before a predicted drought, for instance, prevents distress sales at low prices and avoids the high mortality rates that occur due to lack of feed and water.

Studies in the Sahel region (including areas with similar conditions to Northern Nigeria) have shown that farmers utilizing climate information services experience significant financial gains. These gains stem from improved yields (both crop and livestock-related), reduced input waste, and enhanced market positioning.

Reliable climate information not only benefits the bottom line but also enhances day-to-day animal health management. With advance warning, farmers and pastoralists can avoid reactive, costly measures, saving valuable time and resources. Over time, such forward planning leads to a more resilient livestock sector, ensuring a steadier supply of animal protein and other products. This stability helps moderate price fluctuations in domestic markets and strengthens national food security.

A more resilient and productive livestock sector leads to a more stable supply of animal protein (meat, milk, eggs) and other products, which helps to moderate price volatility in domestic markets and improve national food security. Leveraging seasonal climate predictions in Nigeria's livestock farming is a strategic economic imperative. It transforms the agricultural system from a reactive, vulnerable one to a proactive, resilient, and more profitable enterprise.

Figure 33: Poultry

General Advisory for Livestock

1. Before the onset of rains, livestock farmers are advised to intensify the routine vaccination and deworming schedule.
2. Monitor animals closely for weight loss and heat (Mating) loss during February to April, when temperatures are **expected** to be above normal.
3. Farmers should provide shade and ventilation, especially between February and May.
4. Improve ventilation to reduce dampness and heat stress for animals under intensive care.
5. Strategic destocking of old, unproductive, and weak animals is advised.
6. Strengthen biosecurity to reduce disease spread.
7. Make sure animals get enough minerals and vitamins, provide plenty of clean water to keep them healthy, maintain their weight, and support reproduction during hot periods, delayed rains, or dry spells.
8. Adjust grazing/feeding schedules to cooler parts of the day (early morning or late evening) to reduce heat exposure.
9. Monitor animal health for signs of heat stress, such as rapid breathing, reduced appetite, or lethargy, and consult veterinary services promptly if necessary.

Poultry

1. Fortify water with electrolyte supplements and vitamins (A, C, D, E) to reduce heat stress, especially between February and April when temperatures are expected to be Warmer than normal.
2. Use water sprinklers or misters in poultry houses to help reduce heat stress in the afternoon.
3. Improve ventilation in poultry houses through ridge vents, fans, and foggers to reduce heat stress and mortality.
4. Avoid overstocking and ensure a continuous supply of clean, cool water to prevent dehydration and maintain egg and broiler production.
5. Adjust feeding to cooler periods of the day to maintain feed intake and increase electrolyte supplements during extreme heat.
6. Strengthen biosecurity to prevent disease outbreaks that may arise from pre-onset rainfall and humid conditions.
7. Adjust litter management to prevent coccidiosis and respiratory problems during the peak of the rains.

Cattle/Small Ruminant (Sheep and Goats)

Figure 34: Cattle Stall

1. Areas predicted to have delayed onset are advised to postpone major herd expansion until pasture conditions improve and forage is sufficiently available.
2. It is recommended to prioritize the use of conserved feeds during periods of delayed onset or dry spells to maintain animal nutrition and prevent feed shortages.

3. Pastoralists can promote feed supplementation with energy/protein sources (Bran, cottonseed cake, legume haulms).
4. As the onset is being established, controlled grazing to avoid overgrazing of fragile range lands is advised.
5. Integrate fodder legumes to improve pasture quality.
6. Use rotational/controlled grazing to prevent trampling on young grass.
7. Begin early fodder harvesting, conservation and hay making, especially in areas predicted to have shorter growing seasons.
8. Encourage the cultivation of early-maturing fodder crops to ensure the timely availability of feed for livestock, especially during delayed onset or dry spell periods.
9. Avoid long-distance movement during the extreme heat periods of February to April.
10. Before the onset, pastoralists and farmers, where possible, are encouraged to enter into a communal grazing agreement to reduce conflict.
11. Increase surveillance for foot rot, parasitic infestation, and tick-borne diseases during the rainy season.
12. Identify and secure alternative water sources, especially during the early part of the year, when rainfall is not fully established, and during the period of severe dry spells.
13. Encourage water harvesting and storage where possible to help combat the effects of the severe dry spells expected in the extreme north, the southwest, and Nasarawa State between June and August.
14. Use raised housing or dry bedding to protect against pre-onset rainfall and early wet-season diseases.

Breeding and Reproduction Advisories for cattle/small ruminants

1. In the extreme north, livestock farmers are advised to postpone mating/insemination to June.
2. Avoid calving/kidding/lambing during peak feed scarcity periods, particularly at the beginning of the season.
3. Provide extra nutrition for pregnant and lactating animals before and after the rains are fully established.
4. Avoid uncontrolled breeding between February and May to encourage pasture regeneration until the onset is fully established.
5. Plan breeding such that calving/kidding/lambing occur during peak pasture availability, not during the lean period.
6. Protect pregnant and lactating animals (provide priority access to feed and water).

7. Reduce trekking distance and heat exposure to prevent abortion and weak offspring in the hot months of the year.

Management of cattle/small ruminants during the period of severe Dry spell

1. Secure and ration available feed; do not wait until animals lose weight.
2. Use crop residues, hay, and agro-industrial by-products to supplement grazing
3. Suspend breeding activities during the forecasted dry spell period (June to August) to minimize reproductive stress and reduce the risk of low conception rates
4. Because of the severe dry spells in the extreme north and the southwest, pastoralists should use perennial grasses that are grown on marginal lands to augment feed shortages during the period.
5. Plan animal movement to avoid conflict with farmers and use recognized grazing routes and watering points

Micro-Livestock (Rabbits & Grasscutters)

Figure 35: Rabbitry

1. Position hutches in shaded, well-ventilated areas and avoid overcrowding.
2. Increase water supply and reduce handling during extreme heat to prevent stress-related mortality.
3. Maintain dry, clean bedding to prevent disease during unexpected early rainfall events.

Aquaculture

Figure 36: Fishpond

1. Monitor water temperature and dissolved oxygen levels, as above-normal temperatures expected in January to April may reduce oxygen and may trigger fish kills.
2. Increase pond aeration and shading to mitigate heat effects on production during February to April.
3. In areas where early onset is predicted, farmers can take advantage of the early onset to replenish ponds, but guard against contamination and flash flooding with proper drainage and embankments.
4. Prepare feed reserves and adjust stocking densities in anticipation of dry spells in June to August that reduce water levels.

Beekeeping (Honeybees)

Figure 37: Beehive

1. Provide sugar syrup or pollen substitutes when flowering plants are scarce due to dry spells.
2. Place shallow-water containers near hives to prevent bees from dehydrating.
3. Use shade or place hives under trees to reduce overheating.
4. Avoid opening hives unnecessarily during extreme heat to prevent stress.
5. Monitor for pests and diseases; weakened colonies due to heat and feed scarcity are more vulnerable to pests like varroa mites.
6. Plan for forage diversity: where possible, plant drought-tolerant flowering plants to provide nectar and pollen throughout the dry-season months of November and December, particularly in the northern states.

Water Resources Management

[FILES] Tap water. PHOTO: Getty Images

Figure 38: Tap Water

Water security is a cornerstone of progress across all sectors, the African Union reported that every dollar invested in water and sanitation generates at least seven dollars in benefits across health, education, food security, and environmental protection.

Climate change over the years across the globe and Nigeria in particular has amplified natural weather-related events such as water scarcity, disrupted hydrological cycles, and altered rainfall patterns. This alteration leads to increased frequency and intensity of floods in some areas, water deficits leading to reduced water availability for livelihoods, crops, livestock, and pasture in other areas. This directly threatens lives, livelihoods, and the national security of the country. Addressing these challenges requires both practical solutions and strong policy frameworks. One of which is improved weather monitoring and early warning systems that could help communities prepare for and respond to climate shocks more effectively.

The socio-economic impacts of the 2026 forecast on Nigeria's water resources sector are significant and multi-dimensional. Several factors, such as the early and late onset of rainfall, changes in rainfall amounts, extreme temperature fluctuations, and variations in the length of the rainy season, will all contribute to varying effects on the economy, society, and the environment.

Summarily, the year 2026 Seasonal Climate Prediction.

1. Normal to Early onset of rains
2. Normal cessation
3. Normal to longer-than-normal length of season
4. Normal rainfall amounts and
5. Warmer-than-normal temperatures from January- May.

The 2026 forecasts are likely to negatively impact the water sector in the following ways:

1. Possibility of flash floods over places predicted to experience above-normal rainfall and an extended season, largely due to poor sanitation, low infiltration, short duration, and high-intensity rainfall.
2. Loss of lives, properties, and displacement of persons as a result of flooding and dam breakages.
3. Outbreak of water-borne diseases because of improper refuse disposal, leading to water contamination, especially for areas predicted to experience below normal rainfall.
4. High water temperatures can encourage the growth of harmful algae, decrease nutrient and oxygen concentrations, which can degrade water quality and harm aquatic ecosystems.
5. The effect of evaporation due to temperature increase reduces the volume of water in water bodies, thereby exposing submerged hydrological equipment to the risk of theft and vandalism.
6. Increased conflicts and communal clashes because of droughts and water scarcity.
7. Pollution of surface and groundwater due to over-extraction and exploration.
8. Reduction in the water holding capacity of dams due to increased residues from overflows.
9. Increase in water turbidity because of flood, resulting in increase in the costs of chemicals for water treatment plants.
10. Increase in the rate of erosion and sedimentation
11. which could thus affect surface and groundwater quality.
12. Changes in the behaviour of rivers.
13. Increasing risk of soil liquefaction resulting to pressure on water infrastructure which could conversely lead to dam breakages, and the collapse of other water structures around the dams.
14. Enhancement of eutrophication on surface water bodies thereby reducing water quality.

The forecasts could also have positive implications for the water sector in the following ways:

1. Heightened water table level, which could make water available to be captured, stored in reservoirs, or redirected for domestic, agricultural, and industrial uses.
2. Availability of water for cooling of turbines equally leads to improved hydropower generation in areas predicted to experience above normal rainfall.
3. Improved livelihoods from all aqua-related businesses.

To take advantage of the positive implications and reduce the negative impacts of the forecast, the following practical and policy frameworks are strongly advised.

1. Strengthening Integrated water management plans to help develop strategies to harness benefits, mitigate risks, and ensure sustainable water management in Nigeria.
2. Investing in resilient infrastructure to ensure reliable access to quality water, particularly in regions prone to floods and droughts.

3. Improving water-saving practices, such as rainwater harvesting, mulching, and wastewater reuse to help maximize available resources, retain soil moisture, and reduce the effect of evaporation.
4. Restoring riverbanks and wetlands, as these play a crucial role in safeguarding water sources.
5. Employing Nature-based solutions, such as afforestation and ecosystem restoration, which are important in strengthening water resilience and helping landscapes adapt to climate change.
6. Strengthening water management laws and regulations for long-term success.
7. Increasing sensitization, demolition of structures built on waterways, regulating indiscriminate waste disposal, open defecation, and industrial activities.
8. Ensuring proper water treatments at all levels to ensure continued access to safe drinking water.
9. Strengthening collaborative partnerships with all stakeholders to develop and regularly update the flood response plans before, during, and after climate emergencies.
10. Adherence to standard operational procedures by Dam managers to optimise water resources.
11. Implementation of flood control measures such as dam monitoring, floodgates to manage water flows, and prevent water overflow.
12. Expansion of river channels, drainage systems, and dredging of dam reservoirs to attain their initial volume to enhance recharges and reduce run-off.
13. Monitor water Levels in the reservoirs, rivers, and aquifers to anticipate and respond to flooding.

Transportation sector

Figure 39: Abuja Road Transport

Transportation is essential to a nation's economy, connecting various locations, supporting the movement of people, goods, and services, and driving overall economic development. Weather is one of the most important factors influencing transportation in Nigeria. Because the country experiences distinct **rainy** and **dry** seasons, each period brings conditions that directly affect road, air, rail, and water transport systems.

Weather strongly influences transportation in Nigeria. Flooding, storms, heat, and Harmattan alter road conditions, disrupt traffic, increase accidents, and affect economic activities. Strengthening infrastructure, improving forecasting, and adopting better planning practices can reduce these impacts and ensure safer, more reliable movement across the country.

Road Transportation.

Road transportation is the dominant means of movement in Nigeria, accounting for most of the passenger travel and freight distribution across the country. As the largest road network in West Africa (National Bureau of Statistics 2025³), Nigeria relies heavily on highways, urban roads, and rural routes to support its social and economic activities. The efficiency of road transport is therefore central to national development, trade, education, agriculture, and industrial growth.

The 2026 rainy season is predicted to follow a normal pattern across the country, while warmer-than-normal temperatures are predicted for most parts of the country during the period of January, February, March, April, and May. Even with a typical rainfall distribution, the combined effects of expected rainfall amounts and higher temperatures may still significantly influence road transportation in several ways.

Advisory on the Implications of Weather on Road Transportation in Nigeria

Rainfall and Flooding Implications.

- Heavy rainfall often leads to **urban flooding**, submerging roads and making them impassable.
- Floodwaters hide potholes and damaged sections, increasing accident risks.
- Washed-out bridges and eroded road shoulders disrupt interstate movement.
- Travel delays affect supply chains, school attendance, emergency responses, and business activities.

³ National Bureau of Statistics 2025

Advisory

- Improve and maintain drainage systems along federal, state, and urban roads.
- Elevate roads in flood-prone corridors and use climate-resilient construction materials.
- Monitor NiMet rainfall alerts and avoid driving during peak storm episodes.
- Restrict movement on flooded roads and enforce diversion protocols.

Thunderstorms, Strong Winds, and Poor Visibility

- Intense thunderstorms reduce visibility drastically, increasing the likelihood of collisions.
- Strong winds uproot trees, blow off billboards/roofs, and obstruct roads.

Advisory

- Drivers and other road users should maintain speed limits or park in safe areas during severe storms.
- Emergency response teams should be mobilized to clear fallen trees and debris promptly.
- Avoid parking under trees, unstable structures, or near high-voltage poles during storms.

Harmattan Dust and Dry-Season Haze

- Thick Harmattan haze reduces visibility on highways, especially in northern and central regions.
- Dust accumulation affects drivers' eyes and respiratory health, reducing alertness.
- Poor visibility increases the risk of multi-vehicle crashes.

Advisory

- Motorists should use headlights (low beam) and drive at reduced speed during dust episodes.
- Transport authorities should issue frequent visibility updates to drivers and fleet operators.
- Ensure vehicles' air filters, wipers, and ventilation systems are in good condition.
- Provide roadside warning signage in areas prone to seasonal dust haze.

Extreme Heat and Road Surface Degradation

- High temperatures cause asphalt to soften, crack, or deform, creating hazardous driving conditions.
- Increased tyre blowouts occur due to overheating on long-distance routes.
- Heat can weaken bridge joints and expansion plates, affecting structural stability over time.

Advisory

- Use heat-resistant and climate-adapted asphalt mixtures during road construction.
- Conduct routine monitoring of highways, especially in northern Nigeria, during peak heat months.
- Drivers should regularly check tyre pressure and avoid overloading during extreme heat.

RAIL TRANSPORTATION.

Figure 40: Abuja Rail

Rail transportation is an important part of Nigeria's transport system, supporting the movement of passengers and bulk goods across long distances. In recent years, renewed investment such as the Abuja-Kaduna, Lagos-Ibadan, Warri-Itakpe standard gauge lines, the Lagos Rail Mass Transit and the Abuja Light Rail, has strengthened the sector. However, weather conditions across Nigeria have a significant influence on railway operations, infrastructure reliability, safety, and efficiency.

Weather plays a significant role in shaping the efficiency, safety, and reliability of rail transportation in Nigeria. Rainfall, flooding, extreme heat, Harmattan dust, and thunderstorms all influence rail operations and infrastructure. With effective planning, climate-resilient construction, and strong early warning systems, Nigeria can reduce these impacts and ensure a more robust, safe, and dependable rail transport system.

Advisory on the Implications of Weather on Rail Transportation in Nigeria

Heavy Rainfall and Flooding

- Intense rainfall can **flood rail tracks**, making them unsafe for train movement.
- Waterlogging weakens the **track foundation (ballast)**, leading to misalignment or sinking of rails.
- Erosion, especially in hilly or rural areas, may block rail lines.
- Floods can damage bridges and railway culverts, causing temporary shutdowns.

Advisory

- Conduct regular **track inspections**, especially in flood-prone areas.
- Strengthen **drainage systems** around rail corridors to prevent water accumulation.
- Implement **early warning systems** during heavy rain forecasts.
- Operators should **communicate delays** promptly to passengers to avoid overcrowding at stations.

Extreme Heat and High Temperature Effects

- Cause **rail expansion** (track buckling) due to thermal stress.
- Reduce the structural strength of steel rails and concrete sleepers.
- Affect the stability of bridges and joints.
- Affects passenger comfort in trains that lack adequate cooling.

Thunderstorms and Strong Winds

- High winds can damage **overhead power lines**
- Storms may disrupt **signalling and communication systems**.
- Falling trees or debris could obstruct tracks.

Advisory

- Clear vegetation along rail corridors to minimize hazards.
- Ensure **backup power systems** are functional to support signal operations.
- Activate emergency protocols during severe thunderstorm alerts.

Marine Transportation and Blue Economy

The Marine and Blue Economy sector is diverse, encompassing everything from producing ocean food to maritime transport and shipping, major oil and gas operations, and coastal tourism. There is a huge potential for the sector to profit from the 2026 SCP, as it delivers the valuable foresight necessary for improving decision-making processes, enhancing resource management efficiency, and strengthening risk reduction measures.

SUB-SECTORS

Marine Transport

The normal to above-normal rainfall forecast for 2026 over the coastal region will impact navigation, particularly in the inland waterways. From May through October, the water level is expected to be adequate for small and big vessel transit.

Figure 41: Lagos State Ferry

Advisory:

- The low water level before the full establishment of the rains will likely increase the risk of grounding, making some routes impossible. Operators should ensure adequate route planning to avoid vessel grounding and improve fuel efficiency during their voyage.
- During the onset in February/March, water hyacinths may cause navigational challenges, especially to small boats.

- Between June and September, when the rains are fully established, debris will be washed into the inland waterways from higher grounds. This could damage the hulls and steering gears of small vessels.
- Strong tidal currents may occur, particularly during the monthly shifts between high and low tides. Smaller boats and untrained local boat operators may encounter difficulty navigating these currents.
- The water level is expected to be high during the peak of the rains (June – September). Therefore, mariners are advised to plan their route carefully to ensure safety of live at sea.

Oil and Gas

Figure 42: Oil Exploration in Nigeria

Source: DailyPost

The earlier-than-normal onset of the rainy season anticipated in Rivers and Bayelsa states may have an impact on oil installations, as thunderous activities, which are hazardous, will be common during the pre-onset period. Also, Strong winds associated with severe thunderstorms can turn unsecured items into dangerous objects, posing a risk of injury to staff and structural damage. Hence, any loose objects, tools, or equipment should be adequately secured or removed before the storm's arrival.

Advisory:

- Outdoor activities, including crane operations, scaffolding, and drilling, should be discontinued promptly whenever lightning is detected within a predefined radius to protect personnel from direct lightning strikes, electrocution via metallic structures, and the risk of falls due to sudden wind gusts.

Ocean Food

The projected increase in river discharge during June – September is expected to enrich coastal waters with vital nutrients, which will boost the availability of marine species.

Figure 43: Ocean food market

Advisory:

- Heavy rainfall will drastically reduce salinity in estuaries, and this could affect the availability of certain species of ocean food.
- Artisanal Fishermen should utilize tidal and sea state information before going to sea to mitigate the risk of potential hazards such as loss of life, vessel damage, and equipment failure.

Coastal Tourism

According to the 2026 SCP, January to May will be characterized by normal to slightly warmer conditions, making coastal areas attractive to tourists for outdoor leisure activities such as swimming and sunbathing.

Figure 44: Recreational Beach in the coastal city of Lagos

Advisory:

- “Restricted Water Entry” flags are displayed on beaches during periods of high tide when wave conditions become hazardous. Tourists are advised to remain out of the sea, and unassisted water sports are strictly prohibited.

Power Sector

Figure 45: Renewable Energy, Power Generation and Distribution

Hydropower Generation

The 2026 climate is likely to affect hydropower generation across Nigeria in several ways. Earlier rainfall onset and above-normal rainfall predicted in states such as Niger, Kaduna, Enugu, Cross River, Kebbi, and the FCT are expected to enhance water inflow into major dams, improving hydropower output during the rainy season. However, below-normal rainfall and shorter rainy seasons predicted over Borno, Yobe, Ogun, Oyo, and parts of Niger may reduce water level in rivers Niger and Benue, which may affect water availability in Kainji dam, leading to a decline in hydropower generation and distribution, especially towards the end of the season. Additionally, early cessation of rains in Kogi, Niger, Rivers, and adjacent states could shorten the daily operational hours of the hydropower plants, create dry-season energy deficit conditions, and increase dependence on alternative sources of power.

Renewable Energy (Solar and Wind)

Warmer-than-normal temperatures are predicted across most of the country with possibilities of daytime maximum temperatures reaching 38 to 40°C and above over northern and central states. This is likely to increase solar irradiation and overall solar energy potential over the states. The expected conditions offer great opportunities for investment in solar mini grids, particularly in the northern states where extended periods of temperatures of 40°C and above are common. However, extreme heat may affect the efficiency of solar power system especially where cooling system is absent, this may increase maintenance cost. In the southern states where rainy season is predicted to be longer, there is increased potential for small hydropower and wind energy generation due to enhanced monsoon wind patterns and higher water availability. Nonetheless, intense rainfall over the coastal areas may affect renewable energy infrastructure and complicate deployment.

Advisory

Based on the 2026 predicted conditions, there is need for Nigeria to intensify efforts towards climate-resilient energy planning. Invest in improving current hydropower systems and building new ones in states with projected rainfall increase, while using drought-resistant strategies where rainfall is expected to decrease. For solar power deployment, systems must be designed to be heat resilience, including improved cooling mechanisms and high-temperature-tolerant components. Wind and small hydropower projects should be explored in southern and central states where extended rainy season is predicted. Additionally, upgrading transmission and distribution infrastructure especially in flood-prone coastal states and heat-stressed northern states is critical to reducing outages and enhancing energy stability. Overall, a diversified renewable energy combined with climate-adapted infrastructure, will be essential in ensuring a stable and sustainable power supply in 2026.

Telecommunication Sector

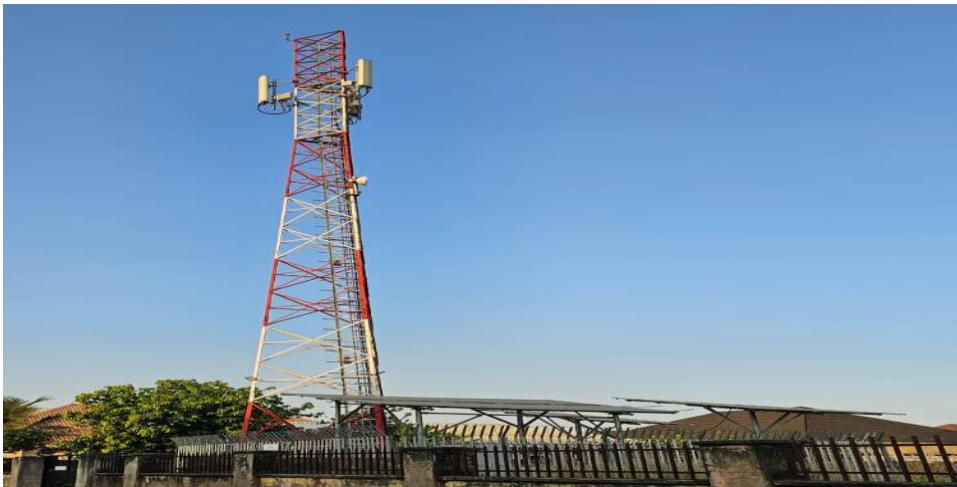


Figure 46: Mobile Network Tower (Source: Getty Images)

Telecommunication infrastructure is a critical component of Nigeria's national infrastructure and must be protected against the increasing impacts of climate variability. The 2026 SCP predicted the occurrence of pre-onset winds, early and late onset of rains, normal to above-normal rainfall amount, extended length of the rainy season, and above-normal temperatures. These conditions are expected to significantly influence both the operational performance of telecommunication companies and consumer access to communication services.

Pre-Onset of the rainy season and its implications on the Telecommunication Sector

The Pre-onset period is often accompanied by strong winds, which may result in structural damage to infrastructures such as bending or collapse of telecommunication towers, masts, satellite dishes, and rotate or misaligning microwave antennas, leading to weak signals, dropped connections, and service interruptions, which may reduce business productivity.

Early and Late Onset of the Rainy Season

The predicted early onset of rainfall in some parts of Bayelsa, Rivers, Delta, Imo, Ondo, Osun, Benue, Kogi, Niger, FCT, Nasarawa, Kebbi, and Kano states may likely result in flash floods and surface runoff capable of damaging cell towers, fibre ducts, and base station power units. Access roads to rural towers may become impassable. However, late onset in some parts of Borno state may result in an extended dry season leading to increased energy demand for cooling of base stations, increases network downtime due to reduced power supply from hydropower dams as well as risk of equipment overheating.

Normal to Above-Normal Rainfall Amount

Above normal rainfall amounts as forecasted in parts of Cross River, Ebonyi, Anambra, Enugu, Ebonyi, Kwara, Niger, Nasarawa, Taraba, Benue, Kaduna, and Gombe states may increase the risk of water ingress into equipment, short-circuits and corrosion, cable damage, service disruption, and Network outages. This may necessitate frequent emergency repairs, equipment replacement, and increased maintenance efforts, resulting in higher operational costs and reduced quality of service for customers.

Normal to Above-Normal Length of Rainy Season

Cool temperatures during wet months over parts of Lagos, Oyo, Delta, Bayelsa, Cross River, Anambra, Enugu, Ebonyi, Kwara, Niger, Nasarawa, Taraba, Benue, Kaduna, and Gombe states can reduce energy demand for cooling systems, while longer wet season can reduce the efficiency of solar and hybrid power systems. Furthermore, prolonged moisture exposure may accelerate equipment deterioration.

Normal to Above-Normal Temperatures

Above-normal daytime temperatures, especially from February to May across most parts of the country are likely to result in thermal overload of base station electronics, reduced battery lifespan and increased failure of outdoor radio equipment.

Advisory

Telecommunication operators are advised to implement the following preparedness and adaptation measures to integrate climate resilience into operational planning and investment strategies and reduce infrastructure damage, service disruption, and economic losses.

Elevate Base Stations in Flood-Prone Areas

Telecommunication facilities located in flood-risk zones should be elevated above known flood levels. Power units and transmission cabinets should be raised, and protective barriers installed where elevation is not feasible.

Create Climate-Risk Maps for Network Locations

Telecommunication companies should map all infrastructure against climate-hazard zones using geospatial tools. Infrastructure should be classified into high, medium, and low-risk zones to guide maintenance scheduling and infrastructure investment.

Invest in Weather-Resistant Infrastructure

Telecommunication companies should invest in the purchase of high-performance dishes and upgrade existing infrastructures to weather-resistant standards. Operators are advised to prioritize the use of water-resistant, heat-resistant, and UV-protected cabling and increase underground cable deployment.

Improve Early-Warning Integration into Operations

Telecommunication operators are advised to integrate meteorological forecasts into maintenance planning and emergency response protocols. This includes subscribing to early warning systems provided by Nigerian Meteorological Agency (NiMet) to obtain timely and accurate weather information for preparedness, risk reduction, and emergency response actions. Operators are also encouraged to align routine maintenance and network expansion activities with seasonal climate forecasts in order to minimize weather-related disruptions and infrastructure damage.

Emergency Response Preparedness before the onset of rainy Season

Telecommunication operators are encouraged to pre-position critical materials, including cables, batteries, antennas, fuel, and essential spare parts, at strategic regional locations prior to the onset of the rainy season. Emergency response teams should be adequately equipped and continuously trained to ensure rapid deployment, timely fault resolution, and restoration of services during extreme weather events.

The timely and effective implementation of these measures will significantly minimize infrastructure damage and operational disruptions, reduce economic losses, enhance network resilience and service reliability, safeguard personnel safety, and contribute meaningfully to sustained socio-economic development.

Disaster Risk Reduction

Weather-related disasters are catastrophic events caused by severe weather and atmospheric conditions, many of which are increasing in frequency and intensity due to climate change. Climate change is no longer a future hazard confined to scientific models or environmental debate only; rather, it is a reality being felt by millions of people worldwide. The rising global temperatures, unpredictable rainfall patterns, disastrous floods, droughts, heatwaves, and the increased frequency of extreme weather events are not just reshaping our ecosystems but also posing significant threats to human and the ecosystem. Furthermore, climate-related stressors aggravate underlying health discriminations, disproportionately affecting vulnerable populations such as children, the elderly, and needy communities.

The prediction for this year indicates normal to below-normal rainfall activities across most parts of the country; however, areas such as Ebonyi, parts of Kebbi, Niger, Abia, Cross River, Akwa Ibom, Kaduna and the FCT due to excessive rainfall predicted, may result in flooding. Flooding is more likely to occur in low-lying areas of Niger, Benue, Kogi, Rivers, and coastal states. Additionally, even in regions where normal rainfall is predicted, flash floods should be anticipated. Windstorms associated with the onset and cessation period may destroy power sources, telecommunication infrastructure, collapse billboards, and remove roofs.

The predicted normal to warmer-than-normal conditions can result in a drier atmosphere, especially over the north in January, February, November, and December. Dry vegetation is highly flammable, increasing the frequency and severity of wildfires, which directly destroy properties and infrastructure. Extreme heat contributes to the formation of ground-level ozone, combined with dry conditions, fuels wildfires that produce smoke, worsening air quality and leading to respiratory distress.

Figure 47: Mokwa community under flood

Source: <https://www.penlobalsinc.com/mokwa-flood-disaster-africa-on-the-front-line-of-climate-crisis>.

Figure 48: 2025 Mokwa flood

Source: <https://www.premiumtimesng.com/regional/north-central/803094-mokwa-flood-over-300-bodies-recovered-lawmaker.html>

Table 4: Implication of the prediction to Disaster Risk Management

IMPLICATION	Advisory	Communication Strategy
<p>1. Windstorms that may destroy properties such as destruction of power and telecommunication infrastructure and roofs</p>	<ul style="list-style-type: none"> Planting of Trees Prevent outside burning/wildfire Getting meteorological information on wind direction and speed from NiMet before mounting Strategically placing of infrastructures Using quality and disaster-reliance materials Monitoring, maintenance, and upgrading of existing infrastructure e.g dams, telecommunications infrastructure 	<ul style="list-style-type: none"> Making Use of Early Warning Advisories Translation of all advisories into the local language Adapting advisory into inclusive such as sign language, visual, and braille. Using digestible IEC materials Collaboration with the Organisation of People with Disabilities, community /religious leader
<p>2. Flash flood due to heavy/high-intensity rainfall</p>	<ul style="list-style-type: none"> Environmental clean-up (waterways and drainage system) Discourage people on waterways Proper town planning Sensitization Dredging of major rivers Building of flood barriers Discourage building on flood plains Adequate preparedness for resource reallocation by NEMA Water harvesting is recommended 	<ul style="list-style-type: none"> Adding DRR strategies to the school curriculum Print and Electronic Media/social media Organizing workshops/trainings Use of influencers Stakeholder engagement Downscaling of the SCP
<p>3. Building collapses due to heavy rainfall/windstorm</p>	<ul style="list-style-type: none"> Authorities should enforce developers to follow building standards and code in project development Use of substandard materials should be discouraged Avoid building on floodplains Construction of drainages <p>(See NEMA Flood Advisory)</p>	

<p>4. Dry Spell -</p>	<ul style="list-style-type: none"> • Encourage water harvesting • Crop Insurance • Adequate preparedness for resource reallocation by NEMA • Supplementary irrigation is recommended where necessary
<p>5. Erosion</p>	<ul style="list-style-type: none"> • Afforestation • Erecting of windbreakers • Construction of retaining wall and embankment in erosion-prone areas
<p>6. Internal displacement of people due to damage to homes</p>	<ul style="list-style-type: none"> • Provision of temporary shelters/camp • Provision of humanitarian assistance • Advocacy and Sensitization • Provision of food items through expansion of food reserves to curb poor nutrition and the associated health risks.
<p>7. Epidemics (cholera, airborne diseases, malaria and meningitis</p>	<ul style="list-style-type: none"> • Proper health care measures such as stocking up on vaccines and Personal Protective Equipment (i.e. gloves, masks, e.t.c) • Sensitization and risk communication • Water, Sanitation, and Hygiene (WASH) advocacy and facilities • Use of mask for people prone to respiratory problems is recommended • Distribution of Vitamins and ORS is recommended
<p>8. Fire outbreak</p>	<ul style="list-style-type: none"> • Discourage/control of bush burning • Turning off electrical appliances • Fire defence equipment • Fire prevention sensitization • Abiding by fire safety code • Relevant authority should install fire emergency monitoring

Health Sector

Weather is a primary cause of many natural disasters, and it affects human health through direct impacts like injuries from extreme events and heat-related illnesses, as well as indirect effects like worsened air quality, the spread of infectious and waterborne diseases, increased malnutrition, and mental health challenges.

The health sector has been among the most vulnerable sectors that have been affected by climate change. Ranging from the spread of infectious diseases to food insecurity, mental illness, and the displacement of healthcare systems, the consequences are both extensive and intense. Early warning systems play a vital role in protecting communities from weather and climate impacts. Preparedness is essential for mitigating the impact of these events.

The Neutral phase of the ENSO projection, which is the basis for the 2026 SCP prediction, is marked by a normal to above-normal climate situation for the country. Flooding, especially flash flooding, should be expected even in places where normal rainfall is expected, which can lead to physical injuries, cuts from debris, and death.

Areas such as parts of Kebbi, Kaduna, Enugu, Cross River, Abia, Ebonyi, and the FCT where above normal rainfall is expected also have the potentials of flooding, which can overwhelm and damage the sewage and sanitation systems, leading to the contamination of drinking water sources with pathogens and posing the risk of waterborne diseases (e.g., cholera, typhoid, diarrhoea and dysentery) and, Mold growth in buildings leading to increase in respiratory illnesses. Damages to homes, roads, and hospitals disrupt access to healthcare and essential supplies, leading to long-term mental health issues like anxiety and post-traumatic stress disorder (PTSD) due to trauma and loss of property/livelihoods.

Coastal regions face compounded risks, as increased rainfall combined with existing vulnerabilities like sea-level rise can lead to more severe and prolonged flooding events. Stagnant water after floods also becomes a breeding ground for disease vectors like mosquitoes, increasing the risk of diseases such as dengue and malaria; as such, adequate sanitation, public health initiatives, and disaster preparedness are essential to reducing these health hazards.

From January to May of 2026, nationwide temperatures are expected to be normal to warmer-than-normal, which suggests that heat-related conditions, including heat exhaustion, heatstroke, and dehydration, may worsen and directly endanger lives. High temperatures force the body to work harder to regulate its temperature (e.g., through sweating and increased blood flow to the skin). This puts a significant strain on the cardiovascular system and can lead to dehydration, loss of fluids and electrolytes, which can lead to organ damage (especially kidneys) and potentially fatal heat stroke. Individuals with pre-existing heart or lung conditions are at higher risk due to the added strain. Heat stress in pregnant women can cause complications. Furthermore, heatwaves can disproportionately impact vulnerable communities and put a strain on healthcare services.

Warmer-than-normal temperatures can create favourable conditions for the proliferation of *Mastomys natalensis* (multimammate rats), which are the primary reservoir of the Lassa virus, increase human–rodent interactions, and support virus survival, leading to higher infection risks. High temperatures may improve food availability (through increased crop yields in the dry season), which supports rodent breeding. An increased rodent population raises the chance of human exposure to infected rodents. Conversely, during the wet season, warmer temperatures combined with moisture can support rodent breeding cycles.

For most parts of the country the harmattan season, which is characterized by dry, dusty winds in January, February, November, and December, also increases the amount of dust and particulate matter in the air might increase the risk of cardiovascular diseases and respiratory tract infections like cough and asthma.

Advisories:

Advisory on Malaria Risk

- Ensure the use of seasonal malaria chemoprevention plan for adequate planning.
- Sensitisation of the public of the disease's potentials is recommended.
- Development of the health workers abilities to communicate the climate-related risk.
- Prevent mosquito bites, by using mosquito nets, insecticide and repellent.
- Ensure window and door screens are in good repair to prevent mosquitoes from entering the home.
- Fumigate the environment, clear the drainage and stagnant water around the home frequently.

- Seek prompt medical attention if the disease is suspected.
- Taking antimalarial tablets under the guidance of a health professional.
- Administering the vaccine to children who live in places where malaria is endemic.
- Relevant stakeholders should provide mosquitoes nets.

Advisory on the Meningitis risk

- Sensitisation of the public of the disease's potential is recommended
- Frequent surveillance is recommended
- Development of the health workers abilities to communicate the climate-related risk
- Emergency health preparedness and response plan is recommended
- Immunization campaign of vaccine is recommended
- Seek proper diagnoses and treatment at medical facilities if sudden neck stiffness or high fever occur.
- Frequent thorough hand washing is advised. This helps to prevent the spread of germs.
- Practice good hygiene which includes not sharing of drinks, foods, straws, eating utensils, lip balms, or toothbrushes with anyone else.
- Avoid overcrowding and ensure adequate ventilation at homes
- Use disposable tissue to cover mouth and nose when coughing or sneezing.

Advisory on Heat Stress

- Drink water at regular intervals
- Limit outdoor activities during the hottest part of the day to earlier or later in the day when it is cooler.
- Stay in shaded areas, wear sunscreen, sunglasses, hats or use umbrellas when outside.
- Keep the home cool by closing the curtains during the hottest time of the day and opening at nighttime to cool down the house.
- Never leave children in a closed, parked vehicle.
- The use of fan and coolers at home if available
- Keep an emergency kit at home that contains ORS packets, and a thermometer, water bottles, towels, a handheld fan, and a checklist to identify and treat symptoms of heat stress.
- Seek prompt medical attention in case of worsened dermatological conditions.

Advisory on Cholera risk

- Sensitisation of the public of the disease's potential is recommended.
- Frequent surveillance is recommended.
- Capacity development of health workers on climate-related risk communication
- Emergency health preparedness and response plan is recommended.
- Immunization campaign is recommended.
- Provision of portable drinking water by the government to communities, especially during floods, could help reduce the intake of contaminated water and spread of water-borne disease.
- Open defecation should be discouraged through the provision of modern toilets and latrines by the government at all levels and non-governmental organizations.
- Wash hands with soap before eating and after using the toilet.

Figure 49: Public Health communication

Building and Construction Sector

Weather and climate constitute significant environmental factors that profoundly influence civil engineering and construction activities. Their impacts are both direct and indirect, affecting various aspects such as building design, construction processes, and the overall integrity of structures. This influence has been acknowledged historically in traditional architecture and in contemporary civil engineering practices.

Meteorological information is an invaluable resource for socio-economic development because it influences the availability, quality, and sustainability of natural resources such as air, water, and soil. While these elements are essential for construction activities, their natural variability can either enhance or severely compromise building design and construction outcomes.

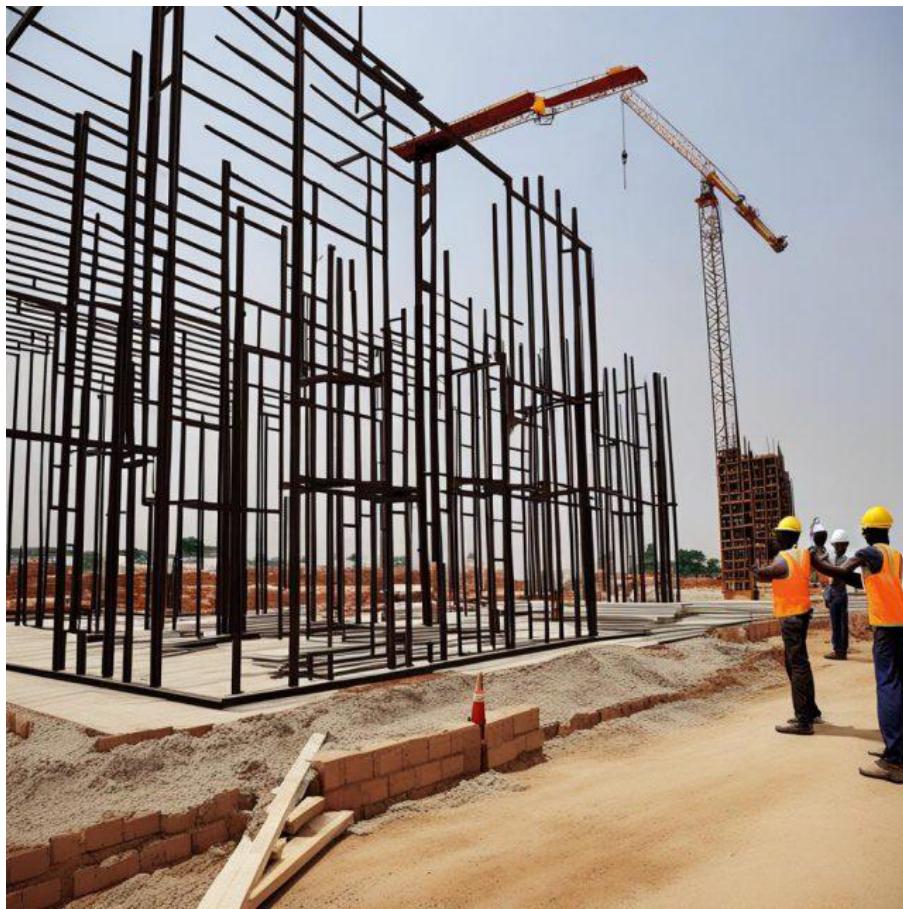


Figure 50: Construction Site

Consequently, the availability of timely, accurate, and adequate weather and climate information is critical for informed decision-making throughout the **pre-construction, construction, and post-construction phases**. Effective integration of meteorological guidance into construction planning is essential to enhancing building safety and addressing the increasing prevalence of building collapses nationwide.

The Nigerian Meteorological Agency (NiMet) provides tailored meteorological products that meet the **daily, weekly, seasonal, and annual information needs** of the building and construction sector. These forecasts have significant implications for construction workers, building materials, equipment performance, and the structural integrity and longevity of buildings.

PRE-ONSET AND ONSET ACTIVITIES

Likely Impacts

1. Severe squalls and thunderstorms associated with the onset period may pose safety risks to on-site workers, particularly those operating at elevated heights such as high-rise buildings.
2. Sudden and intense rainfall events may trigger flash flooding, leading to the washing away or damage of construction materials such as sand and cement.
3. High humidity levels and intermittent rainfall increase the susceptibility of construction equipment to corrosion and rusting.
4. Flooding of workers' residential areas may result in psychological stress, potentially affecting concentration and decision-making on construction sites.

Advisories

1. Strict enforcement of appropriate **Personal Protective Equipment (PPE)**—including helmets, gloves, hard hats, and safety boots is strongly recommended.
2. The PPE should be regularly cleaned and properly stored to prevent disease infestation and deterioration caused by damp conditions.
3. Equipment used for high-rise construction activities should be carefully selected to withstand adverse weather conditions.
4. Routine servicing and maintenance of construction equipment should be prioritised.

AREAS WITH ABOVE-NORMAL RAINFALL

Likely Impacts

1. Construction personnel may experience increased mental stress due to heightened flood risks.
2. Building materials may become vulnerable to corrosion, mould growth, and accelerated deterioration.
3. Roof and ceiling structures may experience erosion, increasing the risk of rainwater penetration.
4. Drainage systems and culverts may suffer structural damage due to excessive runoff.
5. Newly plastered structures may be washed off or weakened by heavy rainfall.

- Increased humidity may result in thermal discomfort for workers and building occupants.

Advisories

- The personnel should be sensitised on **flood preparedness, mitigation, and response measures**.
- Roof designs should preferably adopt **gable roofing systems** to minimise water retention, reduce corrosion, and prevent dew-related damage.
- The selection of **water-resistant and corrosion-resistant materials** should be prioritised during the design stages.
- Drainage designs should incorporate properly sized spillways to accommodate increased runoff.
- Floor designs should allow for permeability to enhance drainage, percolation, and thus improve thermal regulation.
- Regular engagement with NiMet is encouraged to access **short-range forecasts** for weather-sensitive activities such as plastering and painting.

TEMPERATURE VARIABILITY

Temperature fluctuations are anticipated across various parts of the country and may result in the following:

Likely Impacts

- Expansion and contraction of construction materials.
- Development of cracks within building structures.
- Weakening of critical structural components.
- Damage to wood siding, paint, roofing materials, and foundations.
- Increased risk of heat stress among construction workers.

Advisories

- Proper design and placement of ventilation openings should be ensured to enhance airflow and daylighting.
- Heat-resistant construction materials should be adequately considered and incorporated.
- The use of reflective materials for indoor surfaces, windows, and interior finishes is recommended to reduce heat absorption.

It is crucial for civil engineers, architects, and construction professionals to fully understand and integrate weather and climate considerations into planning, design, and construction processes. Leveraging meteorological and climate information will support the development of **climate-resilient, durable, and safe engineering structures**, thereby reducing climate-related construction risks and enhancing public safety.

Chapter Four

Economic Implications of Seasonal Climate Prediction

Seasonal climate predictions have profound economic implications. They act as vital early warning systems that enable climate-sensitive sectors such as agriculture, aviation, maritime operations, disaster management, and health to mitigate losses and enhance resilience.

Early warning systems (EWS) like the SCP remain one of the most cost-effective tools to prevent loss and protect livelihoods. According to the World Bank¹ Every dollar invested in EWS can yield up to tenfold returns by reducing disaster impacts.

This potential payoff is no myth; recent studies have shown that every US\$1 invested in adaptation is expected to yield over \$10.50 in benefits over 10 years. (World Resources Institute²).

These predictions are essential tools for managing climate risks and highlight the considerable macroeconomic costs associated with inadequate adaptation. For example, timely seasonal forecasts allow farmers to determine the best times to plant crops, which can reduce losses from drought or floods. In aviation, accurate climate forecasts help optimise flight routes, leading to reduced fuel consumption and operational costs.

Nigeria is highly vulnerable to climate change, with extreme weather events such as floods and droughts exerting a significant impact on its economic growth prospects, fiscal stability, and balance of payments. According to projections cited in the 2022 Nigerian Meteorological Agency report³, without adequate adaptation measures, Nigeria's GDP could be up to 8% lower by 2100 compared to a scenario where the climate remains stable. Furthermore, the same report estimates that improved weather information in the country's dry savannah areas could deliver economic benefits of approximately ₦17.43 billion annually, underscoring the immense value of accurate seasonal climate predictions.

These timely predictions serve as invaluable tools for proactive planning and building resilience across various sectors and communities. For example, farmers can adjust their planting

¹ World Bank

² World Resources Institute <https://doi.org/10.46830/wriwp.25.00019>

³ NiMet 2022

schedules and select appropriate crop varieties based on rainfall forecasts, helping to safeguard yields against drought and excessive rainfall. Similarly, government agencies can use climate forecasts to allocate resources for flood preparedness in high-risk regions, enhancing disaster management efforts and protecting critical infrastructure. Such targeted actions not only mitigate losses but also strengthen Nigeria's overall capacity to adapt to ongoing climate challenges.

The 2026 Seasonal Climate Prediction and its impacts on production, (GDP)

The 2026 Seasonal Climate Prediction shows a warmer than normal temperature for the country this year. This persistent warming increases evapotranspiration and heat stress on crops, while irregular precipitation raises the likelihood of droughts and floods. As documented by Dell, Jones, and Olken⁴ (2012), higher temperatures in developing economies systematically reduce output growth, mainly through productivity losses rather than capital destruction, suggesting that Nigeria's rising temperature trend poses a structural constraint on long-term GDP growth.

A closer look at the data indicates that years with higher temperature levels and erratic rainfall often coincide with periods of slower GDP expansion or heightened volatility. Nigeria's economy remains structurally dependent on agriculture, trade, and services, all of which are directly exposed to weather conditions. Rising temperatures increase heat stress on crops and livestock, shorten growing seasons, and reduce yields, while rainfall deviations either deficits or excesses raise the incidence of droughts and floods. Empirical evidence from Barrios, Bertinelli, and Strobl⁵ (2010) confirms that rainfall variability in Sub-Saharan Africa exerts a statistically significant negative effect on GDP growth through agricultural output and rural income channels. The precipitation swings in the dataset (roughly 1,050 mm to over 1,330 mm) are therefore consistent with Nigeria's observed output instability.

Beyond agriculture, rising temperatures also affect aggregate labour productivity, which has important implications for GDP. Nigeria's labour market is dominated by informal and outdoor-intensive activities, where exposure to heat directly lowers hours worked and worker efficiency. The upward trend in mean temperature observed after the mid-2000s coincides with a period

⁴ Dell, Melissa, Benjamin F. Jones, and Benjamin A. Olken. 2012. "Temperature Shocks and Economic Growth: Evidence from the Last Half Century." *American Economic Journal: Macroeconomics* 4 (3): 66–95.

⁵ Barrios, S., Bertinelli, L., & Strobl, E. (2010). Trends in rainfall and economic growth in Africa: A neglected cause of the African growth tragedy. *The Review of Economics and Statistics*, 92(2), 350-366.

when GDP growth became more volatile despite rising oil and non-oil revenues. This supports the nonlinear climate–output relationship identified by Burke, Hsiang, and Miguel⁶ (2015), who show that economic output declines sharply when temperatures exceed country-specific optimal thresholds—a condition increasingly relevant for tropical economies such as Nigeria.

Flooding disrupts supply chains and market access, while droughts reduce hydropower generation and increase energy costs, feeding into higher production costs across sectors. The combined effect is lower total factor productivity and heightened inflationary pressures, which can weaken real GDP growth. This aligns with IMF⁷ (2022) and World Bank⁸ (2024) findings that **climate shocks in low-income and lower-middle-income countries translate into persistent output losses when adaptive capacity is limited.**

Summarily, the trends in temperature and precipitation captured in the data provide strong evidence that climate variability and extreme weather conditions constitute a macro-critical risk to Nigeria's productivity and GDP performance. While the dataset does not directly include GDP, its climate indicators align closely with channels identified in empirical growth climate literature namely agricultural yield reductions, labour productivity losses, infrastructure damage, and increased macroeconomic volatility.

The Macroeconomic Landscape and the Value of the Seasonal Climate Prediction

The implications of SCP and the climate information it provides play out across specific, vital sectors of the Nigerian economy:

Agriculture (The Cornerstone Sector): This sector is the most impacted, as it is predominantly rain-fed and employs over 70% of the workforce.

- **Increased Productivity and Reduced Losses:** By using SCPs, farmers can make informed decisions such as selecting suitable crop varieties (e.g., drought-tolerant maize), scheduling optimal planting and harvesting dates, and planning land preparation. This prevents losses from issues like drought, late planting, or excessive rainfall, directly contributing to higher yields, national food security, and improved farmer incomes.
- **Pest and Disease Management:** Climate conditions strongly influence pest and disease

⁶ Burke, M., Hsiang, S. M., & Miguel, E. (2015). Global non-linear effect of temperature on economic production. *Nature*, 527(7577), 235-239.

⁷ Kabundi, Alain, Montfort Mlachila, and Jiaxiong Yao. 2022. "How Persistent are Climate-Related Price Shocks? Implications for Monetary Policy," IMF Working Paper 22/207.

⁸ Ranger, N. A., Mahul, O., & Monasterolo, I. (2022). Assessing financial risks from physical climate shocks. *Washington, DC: World Bank*, 2.

outbreaks. Predictions help farmers adopt preventive measures, such as early pesticide application, safeguarding their investments and yields.

Sectoral Benefits of Seasonal Climate Predictions (SCP) and Policy Recommendations

Seasonal climate predictions (SCP) are increasingly vital across multiple sectors in Nigeria, enabling proactive decision-making and enhancing resilience to climate variability. Their value extends well beyond agriculture, offering tangible benefits in aviation, health, and energy sectors:

- **Aviation:** Accurate SCPs allow airlines and air traffic controllers to anticipate adverse weather conditions—such as severe storms, heavy rainfall, or low visibility—well in advance. This enables better flight scheduling, route optimisation, and fuel management, reducing delays, cancellations, and safety risks. For example, during the rainy season, airports can use SCP data to plan runway maintenance and allocate resources for de-icing or water drainage, ensuring smoother operations and passenger safety.
- **Health:** SCPs support public health authorities by predicting periods of heightened risk for climate-sensitive diseases, such as malaria and meningitis, which are linked to rainfall and temperature fluctuations. Early warnings enable targeted interventions, such as pre-positioning medical supplies, deploying vaccination campaigns, or intensifying public awareness in high-risk areas ahead of anticipated outbreaks. This proactive approach helps reduce disease incidence and pressure on health systems.
- **Energy:** The energy sector, particularly hydroelectric power and oil and gas production, relies on accurate climate forecasts to manage supply and demand. For instance, SCPs can predict periods of drought that may lower water levels in reservoirs, allowing grid operators to adjust power generation schedules and plan for alternative sources. Similarly, forecasts of potential flooding help energy companies safeguard infrastructure and coordinate maintenance activities, minimising service disruptions and economic losses.

Seasonal climate predictions (SCP) are vital for Nigeria's economy, helping to mitigate losses and build resilience across key sectors sensitive to climate variability. These predictions support

proactive planning and adaptation, which are crucial given Nigeria's vulnerability to climate change impacts like floods and droughts.

- **Economic vulnerability and GDP impact:** Nigeria faces significant risks from climate change, with projections indicating a potential GDP reduction of up to 8% by 2100 without adaptation. The economy, heavily reliant on agriculture, is exposed to climate extremes that affect growth, fiscal stability, and balance of payments.
- **Agriculture benefits from SCP:** As the cornerstone sector employing over 70% of the workforce, agriculture gains from SCP through improved decision-making on crop selection, planting schedules, and pest management, leading to increased productivity and reduced losses. However, challenges remain, including limited credit access and the need for adaptation investments.
- **Disaster risk and infrastructure protection:** SCP aids disaster management agencies in early warnings, helping mitigate flood and erosion damage especially in vulnerable regions like the Niger Delta. It also informs long-term coastal protection strategies to counter rising sea levels impacting economic hubs such as Lagos.
- **Broader sectoral applications:** Beyond agriculture and disaster management, SCP benefits aviation by enhancing flight safety, supports health by anticipating disease outbreaks, and assists the energy sector in planning for disruptions caused by floods and droughts affecting oil, gas, and hydroelectric production.

Direct Applications of Climate Data in Aviation, Health, and Energy Sectors

Aviation: The aviation industry relies on real-time and forecasted climate data to underpin flight safety and operational efficiency. Timely weather updates enable pilots and air traffic controllers to avoid hazardous conditions such as thunderstorms, heavy rainfall, low visibility, or severe turbulence. For example, during the peak of the rainy season in Lagos, accurate forecasts have allowed airlines to reroute flights in advance of approaching storms, minimising the risk of accidents and reducing costly delays and diversions. Furthermore, airports use seasonal climate predictions to schedule runway maintenance and deploy resources for de-icing or water drainage, ensuring continued operations even under challenging weather conditions. This leads to fewer flight cancellations, improved passenger safety, and optimised fuel management.

Health: In the health sector, climate data is instrumental in forecasting periods of heightened risk for climate-sensitive diseases, enabling agencies to implement targeted, proactive interventions. Early warnings of increased rainfall and rising temperatures—key drivers for mosquito-borne diseases—allow health authorities to distribute insecticide-treated mosquito nets ahead of malaria season. This approach has been successfully implemented in northern Nigeria, where the timely rollout of nets before the rainy season has significantly reduced malaria incidence. Similarly, forecasts of dry, dusty conditions linked to meningitis outbreaks prompt early vaccination campaigns and public awareness drives, as seen in the Sahel region. These measures, informed by climate predictions, help save lives, alleviate pressure on healthcare systems, and reduce the scale and cost of emergency responses.

Energy: The energy sector, a cornerstone of Nigeria's economy, is acutely vulnerable to climate extremes. However, warnings allowed grid operators to adjust generation schedules, import supplementary power, and stagger maintenance activities, thereby averting widespread blackouts. Similarly, flood forecasts allow oil and gas companies to secure critical infrastructure and temporarily adjust production to avoid costly shutdowns and environmental hazards. By integrating climate data into operational planning, energy providers can ensure a more reliable supply, minimise economic losses, and better safeguard national infrastructure. Collectively, these practical applications of climate data lead to tangible outcomes: enhanced safety in aviation, improved public health through early interventions, and greater energy security. Accurate and timely forecasts empower sector leaders to make informed decisions, deploy resources efficiently, and protect the well-being of communities and the broader economy.

Disaster Risk Management and Infrastructure: SCP Early Warning in Action

Early warnings derived from Seasonal Climate Predictions (SCP) are indispensable for disaster risk management agencies, such as the National Emergency Management Agency (NEMA). A compelling case occurred in 2020, when SCP data forecasted unusually heavy rainfall likely to cause severe flooding in parts of Benue State. Armed with these warnings, NEMA coordinated with state authorities to evacuate at-risk communities, pre-position relief supplies, and reinforce flood defences. As a result, the number of casualties and property damage was

significantly lower than in comparable events in previous years. This case illustrates how timely, science-based predictions can translate directly into lives saved and assets protected, particularly when agencies have the operational capacity and resources to act decisively.

Mitigating Flood and Erosion Damage:

Flooding remains a recurrent threat in Nigeria's coastal and riverine regions, such as the Niger Delta. The catastrophic flood of 2012, which displaced over two million people and caused economic losses estimated in the billions, underscored the high cost of inadequate preparedness. In contrast, more recent use of SCP-enabled flood forecasts has allowed local governments to implement targeted mitigation strategies. For example, in Bayelsa and Lagos State, authorities utilised SCP projections to clear drainage channels, reinforce embankments, and develop community evacuation plans ahead of the 2021 rainy season. These proactive measures, informed by accurate predictions, helped reduce infrastructure damage and economic disruption, demonstrating the tangible benefits of integrating climate information into local risk management.

Coastal Protection: Long-Term Planning for Lagos

Rising sea levels pose a growing economic threat to Nigeria's coastal cities, with Lagos particularly at risk due to its status as a commercial and population hub. Long-term climate projections have informed the Lagos State government's ongoing investment in coastal protection measures, including the construction of sea dykes and the Eko Atlantic City project—a major land reclamation and urban development initiative designed to withstand future sea level rise. These strategies, supported by robust climate data, offer a blueprint for managed retreat or adaptation in high-risk zones. By integrating public financing with private sector expertise, Lagos is setting a precedent for sustainable urban resilience in the face of escalating climate risks. Such approaches not only safeguard vital infrastructure but also create opportunities for economic growth and innovation in climate adaptation.

Economic Benefits to the Marine and Blue Economy

Fisheries and aquaculture are highly sensitive to climatic variables. Accurate seasonal predictions allow operators to plan harvesting and breeding cycles, anticipate periods of low or high productivity, and safeguard stock against adverse weather conditions. This reduces losses, increases yields, and supports food security, ultimately enhancing profitability and stability within the sector.

Shipping and Marine Transportation

Weather and climate conditions directly affect shipping routes, port operations, and vessel safety. NiMet's forecasts enable shipping companies to plan optimal routes, avoid delays due to storms or rough seas, and reduce fuel consumption by navigating more efficiently. This leads to cost savings, lower insurance premiums, and improved reliability for goods transport.

Coastal Infrastructure and Tourism

Seasonal climate prediction assists in the design, maintenance, and operation of coastal infrastructure such as ports, marinas, and resorts. By anticipating extreme weather events, operators can take pre-emptive measures to protect assets and ensure business continuity. For the tourism sector, advanced warning of favourable or adverse conditions helps manage bookings and activities, resulting in better customer satisfaction and economic returns.

Offshore Energy Production

Offshore oil, gas, and renewable energy installations rely on stable weather conditions for safe and efficient operation. NiMet's seasonal forecasts inform maintenance schedules, construction projects, and emergency preparedness plans, reducing downtime and operational hazards. This translates to increased energy output and reduced costs associated with weather disruptions.

Risk Reduction and Investment Confidence

Accurate climate prediction reduces the uncertainty associated with marine economic activities. This not only protects existing investments but also encourages new investment by improving the sector's resilience to climate variability. Governments and private entities can make informed decisions regarding infrastructure development and resource allocation, fostering sustainable growth.

Conclusion

NiMet's seasonal climate prediction delivers significant economic benefits to the marine and blue economy by enhancing operational efficiency, reducing risk, and supporting sustainable development. Continued investment in meteorological services and the integration of climate information into business and policy frameworks will further unlock the potential of Nigeria's maritime sector.

Chapter Five

Daytime and Nighttime Temperature Predictions

This chapter highlights the forecasted day and night temperatures from January to May 2026 for selected locations in the 36 states of the country and the FCT.

Table 5: Predicted 2026 Daytime Temperatures

State	Location	January	February	March	April	May
Abia	Arochukwu	31.5	32.3	32.2	31.9	31.3
	Ukwa West	32.2	32.8	32.3	31.9	31.5
	Umuahia	35.7	36.7	36.2	34.4	33.2
	Umunneochi	31.7	32.7	32.6	32.2	31.5
Adamawa	Ganye	32.1	34.6	35.7	33.8	31.1
	Madagali	35.1	37.7	40.4	41.1	38.9
	Numan	36.2	38.7	39.7	37.4	34.8
	Yola	35.4	37.9	40.6	40.0	36.6
Akwa-Ibom	Eket	32.2	32.9	32.3	31.7	31.1
	Oni	31.5	32.3	32.2	31.9	31.3
	Oron	30.5	30.8	30.5	30.3	30.0
	Oruk	32.2	32.8	32.3	31.9	31.5
Anambra	Uyo	33.7	34.8	33.7	32.8	32.0
	Anambra West	31.9	32.8	32.7	32.3	31.6
	Awka	34.8	35.9	35.8	33.9	32.7
	Idemili South	31.5	32.4	32.4	31.9	31.3
Bauchi	Ogbaru	31.5	32.4	32.4	31.9	31.3
	Bauchi	31.7	34.4	37.6	38.3	36.0
	Bogoro	32.3	33.9	35.2	36.0	33.1
	Darazo	33.2	35.6	38.4	40.9	38.1
Bayelsa	Zaki	32.9	35.4	38.8	42.5	40.9
	Brass	30.3	30.5	30.0	30.9	30.4
	Ekeremor	30.3	30.4	30.1	31.2	30.7
	Southern Ijaw	30.3	30.5	30.0	30.9	30.4
Benue	Yenegoa	33.6	34.3	34.2	33.4	32.8
	Katsina Ala	31.1	32.9	33.3	33.7	32.3
	Makurdi	36.0	37.6	38.1	35.8	33.4
	Oturkpo	32.0	33.7	34.0	34.4	32.8

	Vandeikya	30.5	31.8	31.9	32.7	31.8
Borno	Abadam	32.6	35.2	38.9	42.6	42.4
	Dikwa	35.4	37.6	40.7	43.0	41.4
	Maiduguri	32.3	35.3	39.1	41.5	40.0
	Nganzai	33.8	36.3	39.7	42.4	41.1
Cross-river	Abi	30.6	31.3	31.1	31.2	30.5
	Calabar	33.1	34.0	33.2	32.3	31.9
	Ikom	33.8	35.4	35.2	33.6	32.8
	Obudu	31.0	31.8	31.4	31.2	30.4
	Ogoja	35.5	36.8	36.8	34.8	33.3
Delta	Asaba	34.8	35.9	35.8	34.1	33.0
	Ndoka East	31.7	32.1	31.9	31.9	31.4
	Patani	30.7	30.8	30.5	30.5	30.1
	Warri	33.6	34.3	34.2	33.4	32.8
	Warri North	30.0	30.3	30.1	30.0	29.3
Ebonyi	Abakaliki	30.8	31.7	31.5	31.5	30.6
	Afikposi South	30.5	31.2	31.1	31.2	30.5
	Ishielu	30.8	31.7	31.5	31.5	30.6
Edo	Akoko Edo	32.4	33.5	33.3	32.6	31.3
	Benin	34.1	35.1	34.7	33.3	32.5
	Esan East	30.6	31.1	30.9	30.9	30.3
	Ovia Southwest	30.3	30.9	30.5	30.3	29.5
Ekiti	Ado Ekiti	33.6	34.9	34.3	32.5	31.5
	Ide Orun	31.5	32.4	32.1	31.3	30.1
	Ijero	32.4	33.5	33.1	32.0	30.5
	Ikole	33.4	34.6	34.7	33.7	31.7
Enugu	Aninri	30.5	31.2	31.1	31.2	30.5
	Enugu	34.7	35.6	35.7	33.8	32.5
	Igboeze North	30.6	31.5	31.4	31.2	30.4
	Uzo Uwani	30.7	31.3	31.2	31.3	30.6
FCT	Abaji	33.2	34.2	34.5	33.4	31.4
	Abuja	35.9	37.3	37.5	35.2	33.0
	Bwari	33.0	34.3	34.8	33.0	30.8
	Kuje	33.2	34.5	34.8	33.6	31.6
Gombe	Balanga	35.9	38.1	39.4	37.6	34.4
	Dukku	33.2	35.6	38.4	39.9	37.1
	Gombe	31.9	34.5	37.7	38.3	35.8
	Shomgom	34.0	36.4	37.7	36.0	33.1
Imo	Ideato North	30.3	30.9	30.8	30.9	30.3
	Ngor Okpala	30.6	31.0	30.9	31.0	30.6
	Obowo	30.3	30.8	30.7	30.9	30.3

	Owerri	34.4	35.3	34.5	33.4	32.6
Jigawa	Dutse	30.2	33.4	37.3	39.7	38.3
	Gwaram	32.2	34.9	38.4	41.3	39.7
	Gwiwa	33.0	35.3	38.1	39.9	37.5
	Suletankarkar	31.5	34.1	37.4	40.1	38.7
Kaduna	Birnin Gwari	31.3	33.9	36.0	35.8	32.6
	Kachia	33.6	35.6	36.3	34.8	31.3
	Kaduna	32.3	34.5	36.7	36.1	33.3
	Lere	32.6	34.3	35.9	36.5	33.4
	Zaria	30.8	33.5	36.5	36.8	34.3
Kano	Dambatta	31.9	34.5	38.0	40.9	39.5
	Gwarzo	31.3	33.9	37.0	39.2	37.2
	Kano	30.2	33.4	37.2	39.7	38.3
	Sumaila	31.5	34.1	37.0	38.9	36.7
Katsina	Danmusa	31.2	33.8	36.7	38.4	36.3
	Katsina	30.2	33.2	37.2	39.5	38.6
	Sabuwa	31.3	33.9	36.4	36.9	34.1
	Zango	31.5	34.3	37.9	41.1	40.1
Kebbi	Arewa	34.9	37.2	39.9	41.6	39.0
	Dokonwasagu	33.8	36.3	38.2	38.0	34.8
	Suru	35.0	37.4	39.4	39.9	36.6
	Yelwa	35.5	37.8	39.8	38.9	36.2
Kogi	Ibaji	31.5	32.2	31.9	31.7	30.9
	Lokoja	35.8	37.7	38.0	35.8	33.6
	Yagba West	33.4	34.6	34.7	33.7	31.7
Kwara	Baruten	34.4	35.8	35.3	33.8	32.0
	Eki	32.4	33.5	33.1	32.0	30.5
	Ilorin	34.7	36.1	36.4	34.3	32.5
	Pategi	34.6	35.9	36.4	35.7	33.3
Lagos	Badagry	30.5	30.5	30.2	30.2	29.7
	Ikeja	33.9	34.2	34.0	32.9	32.0
	Ikorodu	30.2	30.3	30.1	30.0	29.5
	Lagos Island	32.1	32.6	32.8	31.8	31.0
Nasarawa	Akwanga	34.3	36.2	36.4	34.1	31.5
	Awe	32.3	34.2	34.7	33.7	31.9
	Doma	33.0	34.7	35.2	34.3	32.2
	Lafia	36.2	37.9	38.5	36.0	33.5
Niger	Bida	35.9	37.9	38.7	37.0	34.2
	Borgu	33.6	35.7	37.4	37.8	35.0
	Lapai	33.2	34.2	34.5	33.4	31.4
	Magama	33.6	35.9	37.4	37.1	34.0

	Mashigi	34.7	36.3	37.1	36.6	33.9
	Minna	35.7	37.6	38.6	36.6	33.7
	Rijaw	27.1	26.8	27.5	29.2	30.2
Ogun	Abeokuta	35.7	36.7	36.2	34.4	33.2
	Ijebu Ode	33.9	34.8	34.6	32.9	32.1
	Imeko Afon	32.2	32.8	32.1	31.6	30.6
	Ipokia	31.3	31.3	30.7	30.5	29.8
	Ogun Waterside	30.1	30.5	30.1	29.9	29.3
Ondo	Akoko Northwest	31.5	32.4	32.1	31.3	30.1
	Akure	33.7	35.0	34.4	32.6	31.6
	Ilaje Eseodo	30.0	30.3	30.1	30.0	29.3
	Ondo	33.5	34.5	33.8	32.0	31.4
	Ose	30.9	31.3	30.8	30.5	29.9
Osun	Atakumosa East	31.0	31.8	31.3	30.5	29.6
	Ifedayo	32.4	33.5	33.1	32.0	30.5
	Ife North	31.2	31.8	31.1	30.6	29.7
	Oshogbo	34.2	35.4	34.9	32.7	31.7
Oyo	Ibadan	34.4	35.5	35.1	33.3	32.2
	Iseyin	34.8	35.8	35.3	33.0	31.8
	Iwajowa	32.6	33.5	32.9	32.0	30.8
	Oluyole	31.4	31.6	31.0	30.7	30.1
	Shaki	34.4	35.7	35.5	33.1	31.7
Plateau	Bokkos	34.3	35.9	36.1	34.0	31.1
	Jos	29.1	30.6	32.2	30.7	28.5
	Langtang South	34.5	36.5	36.8	34.9	32.5
	Wase	36.1	37.6	38.1	35.9	32.9
Rivers	Akukutor	30.3	30.5	30.0	29.8	29.4
	Ogba Egbe	30.6	31.0	30.9	31.0	30.6
	Opobo Nkoro	29.9	29.9	29.5	29.5	29.1
	Port Harcourt	33.7	34.4	33.6	32.8	32.2
Sokoto	Gudu North	33.6	36.2	39.4	42.1	40.4
	Illela	33.3	36.0	39.4	42.0	40.1
	Isa	33.3	35.8	38.9	41.0	38.9
	Kebbe	34.5	37.0	39.2	39.8	36.6
	Sokoto	33.1	35.9	39.5	41.0	39.2
Taraba	Bali	35.1	37.1	37.4	35.2	31.6
	Jalingo	35.6	37.7	39.0	36.8	34.1
	Sardauna	30.0	31.8	31.8	30.1	28.0
Yobe	Gulani	34.5	36.6	39.1	39.9	36.8
	Nguru	31.2	34.6	38.6	41.1	40.7
	Potiskum	31.7	34.6	38.5	40.5	39.0

	Tarmuwa	32.6	35.1	38.7	41.8	40.6
	Yunusari	32.1	34.7	38.4	42.0	41.4
Zamfara	Gummi	34.5	37.0	39.2	39.8	36.6
	Gusau	32.5	35.1	38.5	39.1	37.1
	Maru	32.9	35.5	37.6	37.6	34.6
	Shinkafi	33.3	35.8	38.9	41.0	38.9

Table 6: Predicted 2026 Nighttime Temperatures

State	Location	January	February	March	April	May
Abia	Arochukwu	21.1	22.7	23.7	24.5	24.4
	Ukwa West	21.9	23.3	24.1	24.8	24.6
	Umuahia	22.9	24.1	24.7	24.1	24.0
	Umunneochi	20.4	22.3	23.6	24.6	24.4
Adamawa	Ganye	16.4	18.2	20.7	22.6	22.2
	Madagali	15.8	18.2	21.7	25.6	25.8
	Numan	17.8	20.5	23.9	26.3	25.5
	Yola	18.1	21.2	25.3	27.4	26.1
Akwa-Ibom	Eket	22.9	23.9	24.3	24.2	24.1
	Oni	21.1	22.7	23.7	24.5	24.4
	Oron	26.5	27.3	27.3	27.8	27.6
	Oruk	21.9	23.3	24.1	24.8	24.6
	Uyo	22.5	23.8	24.3	24.0	24.0
Anambra	Anambra West	20.8	22.6	23.7	24.7	24.5
	Awka	22.6	24.5	25.2	24.4	24.2
	Idemi South	20.8	22.6	23.8	24.7	24.5
	Ogbaru	20.8	22.6	23.8	24.7	24.5
Bauchi	Bauchi	14.5	17.5	21.6	24.5	24.4
	Bogoro	16.5	18.7	20.7	22.7	22.2
	Darazo	15.5	18.0	21.5	25.7	25.5
	Zaki	15.1	17.5	21.0	25.2	26.2
Bayelsa	Brass	23.9	25.0	25.2	25.8	25.6
	Ekeremor	23.8	25.1	25.5	26.1	25.8
	Southern Ijaw	23.9	25.0	25.2	25.8	25.6
	Yenegoa	22.8	24.1	24.6	25.2	25.0
Benue	Katsina Ala	18.7	21.0	23.3	24.7	24.4
	Makurdi	19.1	22.6	25.7	25.1	24.1
	Oturkpo	19.0	21.6	23.6	24.9	24.6
	Vandeikya	18.9	21.2	23.3	24.6	24.4
Borno	Abadam	15.2	17.7	21.6	26.7	28.6

	Dikwa	17.0	19.4	22.9	27.2	28.0
	Maiduguri	13.4	16.1	20.9	25.4	26.9
	Nganzai	16.1	18.5	22.3	26.7	27.9
Cross-river	Abi	20.6	22.5	23.9	24.9	24.7
	Calabar	23.2	24.1	24.3	23.9	23.8
	Ikot Ekpene	20.7	22.4	23.8	23.4	23.3
	Obudu	20.0	21.8	23.5	24.5	24.4
	Ogoja	20.7	22.9	24.6	24.2	23.7
Delta	Asaba	22.7	24.2	25.1	24.6	24.4
	Ndokwa East	21.8	23.3	24.2	24.9	24.8
	Patani	22.8	24.1	24.6	25.2	25.0
	Warri	23.4	24.5	25.0	24.6	24.4
	Warri North	23.7	25.2	25.8	26.4	26.1
Ebonyi	Abakaliki	19.6	21.8	23.6	24.7	24.5
	Afikpo South	20.4	22.3	23.6	24.6	24.4
	Ishielu	19.6	21.8	23.6	24.7	24.5
Edo	Akoko Edo	19.9	22.0	23.4	24.3	23.9
	Benin	23.3	24.5	24.9	24.3	24.3
	Esan East	20.2	22.2	23.4	24.3	24.1
	Ovia Southwest	21.7	23.4	24.3	25.1	24.8
Ekiti	Ado Ekiti	19.6	21.7	23.0	22.6	22.5
	Ide Orun	19.7	21.6	22.8	23.7	23.3
	Ijero	19.3	21.6	22.8	23.7	23.3
	Ikole	19.8	21.9	23.4	24.2	23.7
Enugu	Aninri	20.4	22.3	23.6	24.6	24.4
	Enugu	21.3	23.3	24.5	24.0	23.6
	Igboezie North	19.1	21.3	23.0	24.2	24.0
	Uzo Uwani	20.2	22.3	23.7	24.7	24.5
FCT	Abaji	18.4	20.8	23.1	24.8	24.3
	Abuja	18.9	21.8	24.3	24.3	23.4
	Bwari	18.0	20.3	22.4	24.0	23.5
	Kuje	19.1	21.5	23.6	25.0	24.4
Gombe	Balanga	18.0	20.8	23.6	25.7	24.8
	Dukku	15.5	18.0	21.5	25.7	25.5
	Gombe	15.8	18.8	22.8	24.9	24.4
	Shomgom	17.0	19.9	23.2	25.5	24.7
Imo	Ideato North	20.8	22.6	23.8	24.7	24.5
	Ngor Okpala	21.5	23.0	24.0	24.7	24.6
	Obowo	21.1	22.7	23.7	24.5	24.4
	Owerri	22.4	24.0	24.4	24.0	23.9
Jigawa	Dutse	14.1	16.9	21.3	25.1	25.7

	Gwaram	15.2	17.7	21.2	25.6	25.5
	Gwiwa	14.2	16.6	19.9	24.2	25.3
	Suletankarkar	14.7	17.1	20.8	25.3	26.5
Kaduna	Birnin Gwari	15.1	17.5	20.2	23.3	23.2
	Kachia	16.5	19.1	20.8	22.7	22.2
	Kaduna	15.8	18.4	21.4	23.4	22.5
	Lere	15.1	17.4	19.8	22.5	22.2
	Zaria	14.7	17.4	21.3	23.4	23.0
Kano	Dambatta	14.2	16.6	20.2	24.7	26.0
	Gwarzo	13.9	16.2	19.5	23.9	24.7
	Kano	13.6	16.6	21.0	25.1	25.7
	Sumaila	13.9	16.3	19.7	24.1	24.7
Katsina	Danmusa	14.4	16.7	19.9	23.8	24.3
	Katsina	13.4	16.1	20.4	24.8	25.9
	Sabuwa	15.0	17.5	20.3	23.6	23.5
	Zango	14.6	17.1	20.8	25.4	26.9
Kebbi	Arewa	17.6	20.1	23.2	27.6	27.6
	Dokonwasagu	16.5	19.1	22.1	25.3	24.7
	Suru	17.5	20.2	23.6	27.5	26.6
	Yelwa	16.1	19.4	23.9	26.4	25.4
Kogi	Ibaji	19.9	22.1	23.6	24.7	24.4
	Lokoja	20.6	24.0	26.2	25.6	24.9
	Yagba West	19.8	21.9	23.4	24.2	23.7
Kwara	Baruten	19.2	21.7	23.0	24.1	23.7
	Ekiți	19.3	21.6	22.8	23.7	23.3
	Ilorin	20.0	22.5	23.9	23.6	23.1
	Pategi	20.0	22.5	24.4	25.5	24.8
Lagos	Badagry	24.8	25.9	26.1	26.7	26.4
	Ikeja	23.8	24.8	25.4	24.9	24.5
	Ikorodu	24.7	25.9	26.2	26.9	26.5
	Lagos Island	25.2	25.9	26.5	26.0	25.6
Nasarawa	Akwanga	18.9	21.3	23.0	24.3	23.7
	Awe	18.7	21.3	23.8	25.4	24.9
	Doma	19.3	21.9	24.1	25.4	24.8
	Lafia	19.3	22.9	26.0	25.7	24.7
Niger	Bida	21.6	24.5	26.6	26.2	25.0
	Borgu	18.4	21.2	24.5	27.2	26.2
	Lapai	18.4	20.8	23.1	24.8	24.3
	Magama	17.0	19.8	23.0	26.0	25.2
	Mashigi	18.6	21.5	24.1	26.0	25.2
	Minna	20.5	23.3	25.2	25.0	23.9

	Rijaw	26.7	26.6	26.9	28.6	29.6
Ogun	Abeokuta	23.0	24.5	25.2	24.8	24.5
	Ijebu Ode	23.0	24.0	24.5	24.2	24.0
	Imeko Afon	21.0	22.9	23.6	24.3	24.0
	Ipokia	24.8	25.9	26.1	26.6	26.2
	Ogun Waterside	23.7	25.1	25.7	26.3	26.0
Ondo	Akoko Northwest	19.7	21.6	22.8	23.7	23.3
	Akure	19.7	21.8	23.1	22.7	22.6
	Ilaje Eseodo	23.7	25.2	25.8	26.4	26.1
	Ondo	22.3	23.4	23.9	23.4	23.2
	Ose	20.3	22.1	23.2	24.1	23.9
Osun	Atakumosa East	19.7	21.7	22.7	23.6	23.2
	Ifedayo	19.3	21.6	22.8	23.7	23.3
	Ife North	21.3	23.1	23.8	24.6	24.3
	Oshogbo	19.8	21.9	23.4	23.0	22.8
Oyo	Ibadan	22.8	23.9	24.3	23.7	23.5
	Iseyin	21.3	22.5	23.4	23.0	22.8
	Iwajowa	20.2	22.3	23.3	24.1	23.8
	Oluyole	22.0	23.6	24.2	24.9	24.6
	Shaki	20.2	22.1	23.1	22.6	22.5
Plateau	Bokkos	18.9	21.0	22.4	23.5	22.9
	Jos	12.1	14.1	17.2	18.6	18.6
	Langtang South	18.9	21.8	24.5	25.8	25.1
	Wase	20.0	22.3	24.4	25.7	24.8
Rivers	Akukutor	23.9	25.0	25.3	25.9	25.7
	Ogba Egbe	21.5	23.0	24.0	24.7	24.6
	Opobo Nkoro	25.2	26.2	26.5	27.0	26.8
	Port Harcourt	21.8	23.0	23.7	23.5	23.7
Sokoto	Gudu North	16.6	19.1	22.2	27.0	28.3
	Illela	16.2	18.7	21.9	26.6	27.8
	Isa	16.0	18.5	21.7	26.1	26.8
	Kebbe	17.2	19.7	22.8	26.8	26.3
	Sokoto	17.0	20.0	24.0	27.4	27.7
Taraba	Bali	19.7	21.8	23.8	24.9	23.9
	Jalingo	18.9	22.3	25.6	25.6	24.5
	Sardauna	16.9	18.4	19.4	20.4	20.0
Yobe	Gulani	16.9	19.3	22.4	25.5	25.1
	Nguru	14.4	16.9	21.0	24.5	26.1
	Potiskum	13.5	16.5	20.9	24.8	26.0
	Tarmuwa	15.4	17.8	21.6	26.2	27.5
	Yunusari	15.0	17.4	21.3	26.0	27.7
Zamfara	Gummi	17.2	19.7	22.8	26.8	26.3
	Gusau	15.4	18.6	22.1	25.0	25.2
	Maru	16.0	18.5	21.4	24.6	24.3
	Shinkafi	16.0	18.5	21.7	26.1	26.8

Chapter Six

Detailed 774 Local Government Area Seasonal Rainfall Prediction

Nigeria is a country with vast expanse of land, with different climatic and agroecological zones. Most states have about 2 or 3 agroecological zones and this has implications on the rainfall distribution such as onset, cessation, length of season and annual rainfall amount over each state. Below is a detailed breakdown of the forecast over the 774 local government areas of the country.

Table 7: Summary of Predicted Onset Date, Cessation Date, Length of Season and Annual Rainfall Amounts for States and Local Government Areas of Nigeria

State	City	Onset date	Season end	Season Length Days	Annual Rainfall mm
Abia	Aba North	13-Mar	09-Dec	271	2556
	Aba South	13-Mar	10-Dec	272	2569
	Arochukwu	19-Mar	06-Dec	262	2354
	Bende	20-Mar	05-Dec	260	2309
	Ikwoano	17-Mar	07-Dec	265	2427
	Isiala Ngwa North	17-Mar	07-Dec	266	2439
	Isiala Ngwa South	15-Mar	08-Dec	268	2475
	Isuikwua	22-Mar	04-Dec	257	2247
	Oboma Ngwa	13-Mar	09-Dec	271	2544
	Ohafia Abia	21-Mar	05-Dec	259	2301
	Osioma Ngwa	14-Mar	09-Dec	270	2519
	Ugwunagbo	12-Mar	10-Dec	273	2596
	Ukwa East	11-Mar	11-Dec	275	2632
	Ukwa West	11-Mar	10-Dec	274	2619
Adamawa	Umuahia North	19-Mar	06-Dec	261	2343
	Umuahia South	18-Mar	07-Dec	264	2388
	Umu-Nneochi	25-Mar	03-Dec	253	2173
	Demsa	25-May	21-Oct	149	1077
	Fufure	10-May	23-Oct	166	1123
	Ganye	30-Apr	29-Oct	182	1300
	Girie	24-May	16-Oct	145	945
	Gombi	13-May	21-Oct	161	1075
	Guyuk	19-May	18-Oct	152	1000
	Hong	25-May	15-Oct	143	931
	Jada	03-May	27-Oct	177	1238
	Jimeta	11-May	23-Oct	165	1107
	Lamurde	15-May	20-Oct	158	1048
	Madagali	02-Jun	10-Oct	130	861
	Maiha	19-May	18-Oct	152	996
	Mayo-Bel	05-May	26-Oct	174	1200
	Michika	29-May	12-Oct	136	889
	Mubi North	26-May	14-Oct	142	923

	Mubi South	24-May	15-Oct	144	941
	Numan	14-May	21-Oct	160	1064
	Shelleng	20-May	17-Oct	150	981
	Song	19-May	18-Oct	153	1001
	Toungo	07-May	25-Oct	171	1168
	Yola North	22-May	27-Sept	128	1104
	Yola South	24-May	01-Oct	130	1118
Akwa Ibom	Abak	12-Mar	09-Dec	272	2779
	Eastern Obolo	05-Mar	13-Dec	283	3027
	Eket	07-Mar	12-Dec	280	2966
	Esit - Eket	07-Mar	12-Dec	280	2957
	Essien Udim	13-Mar	08-Dec	270	2732
	Etim Ekpo	11-Mar	09-Dec	273	2794
	Etinan	09-Mar	11-Dec	276	2869
	Ibeno	06-Mar	13-Dec	282	3005
	Ibesikpo Asutan	11-Mar	10-Dec	274	2822
	Ibiono Ibom	15-Mar	08-Dec	268	2681
	Ika	12-Mar	09-Dec	272	2771
	Ikono	15-Mar	08-Dec	268	2681
	Ikot Abasi	06-Mar	13-Dec	282	3004
	Ikot Ekpene	14-Mar	08-Dec	268	2685
	Ini	17-Mar	06-Dec	265	2605
	Itu	13-Mar	08-Dec	270	2718
	Mbo	07-Mar	12-Dec	281	2969
	Mkpatt Enin	06-Mar	12-Dec	281	2983
	Nsit Atai	09-Mar	10-Dec	276	2863
	Nsit Ibom	10-Mar	10-Dec	275	2832
	Nsit Ubium	08-Mar	11-Dec	278	2900
	Obot Akara	15-Mar	07-Dec	267	2662
	Okobo	09-Mar	11-Dec	277	2876
	Onna	07-Mar	12-Dec	280	2966
	Oron	08-Mar	11-Dec	278	2912
	Oruk Anam	09-Mar	10-Dec	276	2865
	Udung Uko	08-Mar	11-Dec	278	2903
	Ukanafun	11-Mar	10-Dec	274	2823
	Uruan	12-Mar	09-Dec	273	2786
	Urue-Offong/Oruko	08-Mar	11-Dec	279	2924
	Uyo	12-Mar	09-Dec	272	2778
Anambra	Aguata	25-Mar	02-Dec	251	2332
	Anambra East	29-Mar	29-Nov	245	2202
	Anambra West	01-Apr	28-Nov	240	2121
	Anaocha	27-Mar	01-Dec	249	2289
	Awka North	30-Mar	29-Nov	244	2190
	Awka South	28-Mar	30-Nov	247	2248
	Ayamelum	02-Apr	27-Nov	240	2107
	Njikoka	28-Mar	30-Nov	246	2233
	Ekwusigo	25-Mar	02-Dec	251	2329
	Idemili North	27-Mar	01-Dec	249	2275
	Idemili South	26-Mar	01-Dec	250	2298
	Ihiala	23-Mar	03-Dec	254	2388
	Dunukofia	28-Mar	30-Nov	247	2248

	Nnewi North	25-Mar	02-Dec	251	2328
	Nnewi South	25-Mar	02-Dec	252	2351
	Ogbaru	24-Mar	02-Dec	254	2376
	Onitsha North	27-Mar	01-Dec	249	2276
	Onitsha South	27-Mar	01-Dec	249	2288
	Orumba North	27-Mar	01-Dec	249	2285
	Orumba South	25-Mar	02-Dec	251	2327
	Oyi	28-Mar	30-Nov	247	2236
Bauchi	Alkaleri	22-May	27-Oct	158	975
	Bauchi	27-May	25-Oct	151	922
	Bogoro	18-May	29-Oct	164	1021
	Damban	14-Jun	05-Oct	113	745
	Darazo	08-Jun	08-Oct	123	776
	Dass	23-May	27-Oct	156	961
	Gamawa	20-Jun	01-Oct	104	728
	Ganjuwa	03-Jun	09-Oct	128	857
	Giade	12-Jun	05-Oct	114	752
	Itas/Gadau	18-Jun	02-Oct	106	733
	Jama'are	15-Jun	04-Oct	110	740
	Katagum	14-Jun	05-Oct	113	743
	Kirfi	29-May	14-Oct	138	851
	Misau	12-Jun	07-Oct	117	754
	Ningi	06-Jun	09-Oct	125	784
	Shira	12-Jun	10-Oct	120	751
	Tafawa-Balewa	22-May	20-Oct	151	974
	Toro	28-May	21-Oct	146	910
Bayelsa	Warji	08-Jun	06-Oct	120	775
	Zaki	23-Jun	30-Sept	99	674
	Brass	27-Feb	20-Dec	297	3106
	Ekeremor	04-Mar	17-Dec	288	2884
	Kolokuma/Opokuma	07-Mar	16-Dec	284	2791
	Nembe	28-Feb	20-Dec	296	3076
	Ogbia	02-Mar	18-Dec	291	2956
	Sagbama	08-Mar	15-Dec	282	2751
Benue	Southern Ijaw	29-Feb	19-Dec	294	3034
	Yenegoa	07-Mar	15-Dec	283	2778
	Ado	30-Apr	31-Oct	184	1671
	Agatu	14-May	23-Oct	163	1334
	Apa	11-May	25-Oct	167	1396
	Buruku	07-May	27-Oct	173	1477
	Gboko	07-May	27-Oct	174	1493
	Guma	14-May	23-Oct	163	1329
	Gwer East	07-May	27-Oct	172	1476
	Gwer West	11-May	25-Oct	167	1393
	Katsina-Ala	07-May	27-Oct	173	1486
	Konshisha	02-May	30-Oct	180	1599
	Kwande	30-Apr	31-Oct	184	1669
	Logo	12-May	24-Oct	165	1368
	Makurdi	22-May	29-Oct	160	1210
	Obi	02-May	30-Oct	181	1611
	Ogbadibo	02-May	30-Oct	181	1607
	Ohimini	05-May	28-Oct	176	1531

	Oju	30-Apr	31-Oct	183	1653
	Okpokwu	02-May	30-Oct	181	1607
	Oturkpo	06-May	28-Oct	175	1516
	Tarka	10-May	25-Oct	168	1406
	Ukum	11-May	25-Oct	167	1398
	Ushongo	03-May	30-Oct	180	1595
	Vandeikya	30-Apr	31-Oct	184	1664
Borno	Abadam	15-Jul	28-Sept	75	484
	Askira/Uba	02-Jun	20-Oct	140	952
	Bama	13-Jun	13-Oct	122	754
	Bayo	30-May	21-Oct	144	873
	Biu	02-Jun	19-Oct	139	842
	Chibok	03-Jun	18-Oct	137	733
	Damboa	08-Jun	16-Oct	130	703
	Dikwa	19-Jun	10-Oct	113	459
	Gubio	29-Jun	04-Oct	97	456
	Guzamala	04-Jul	03-Oct	90	461
	Gwoza	08-Jun	16-Oct	130	702
	Hawul	30-May	21-Oct	144	771
	Jere	18-Jun	10-Oct	115	1093
	Kaga	14-Jun	12-Oct	120	896
	Kala/Balge	27-Jun	08-Oct	104	762
	Konduga	26-Jun	12-Oct	108	653
	Kukawa	09-Jul	02-Oct	84	466
	Kwaya Kusar	29-May	22-Oct	146	966
	Mafa	20-Jun	09-Oct	111	457
	Magumeri	22-Jun	08-Oct	108	985
	Maiduguri	18-Jun	10-Oct	115	1198
	Marte	25-Jun	06-Oct	103	563
	Mobbar	12-Jul	30-Sept	80	475
	Monguno	27-Jun	05-Oct	100	454
	Ngala	24-Jun	07-Oct	106	453
	Nganzai	26-Jun	06-Oct	101	453
	Shani	26-May	23-Oct	150	975
Cross River	Abi	28-Mar	30-Nov	247	2356
	Akamkpa	21-Mar	04-Dec	259	2604
	Akpabuyo	13-Mar	09-Dec	271	2870
	Bakassi	12-Mar	09-Dec	272	2902
	Bekwarra	08-Apr	24-Nov	231	2046
	Biase	23-Mar	03-Dec	255	2512
	Boki	02-Apr	27-Nov	239	2200
	Calabar Municipal	16-Mar	07-Dec	267	2776
	Calabar South	13-Mar	09-Dec	271	2867
	Etung	27-Mar	01-Dec	249	2384
	Ikom	30-Mar	29-Nov	244	2288
	Obanliku	05-Apr	26-Nov	235	2118
	Obubra	29-Mar	30-Nov	245	2316
	Obudu	06-Apr	25-Nov	233	2081
	Odukpani	18-Mar	06-Dec	263	2686
	Ogoja	05-Apr	26-Nov	234	2109
	Yakurr	27-Mar	01-Dec	249	2390

	Yala	06-Apr	25-Nov	233	2093
Delta	Aniocha North	03-Apr	27-Nov	238	2180
	Aniocha South	31-Mar	28-Nov	242	2259
	Bomadi	19-Mar	05-Dec	262	2664
	Burutu	20-Mar	05-Dec	260	2622
	Ethiope East	28-Mar	30-Nov	247	2352
	Ethiope West	25-Mar	02-Dec	252	2449
	Ika Northeast	01-Apr	28-Nov	240	2222
	Ika South	01-Apr	28-Nov	241	2239
	Isoko North	23-Mar	03-Dec	256	2532
	Isoko South	21-Mar	04-Dec	258	2577
	Ndokwa East	24-Mar	02-Dec	253	2476
	Ndokwa West	27-Mar	01-Dec	249	2396
	Okpe	25-Mar	02-Dec	252	2460
	Oshimili North	03-Apr	27-Nov	239	2193
	Oshimili South	31-Mar	29-Nov	243	2278
	Patani	19-Mar	06-Dec	262	2671
	Sapele	27-Mar	01-Dec	248	2378
	Udu	22-Mar	03-Dec	256	2542
	Ughelli North	23-Mar	03-Dec	255	2525
	Ughelli South	21-Mar	04-Dec	258	2591
	Ukwuani	27-Mar	01-Dec	249	2393
	Uvwie	24-Mar	03-Dec	254	2504
	Warri North	27-Mar	01-Dec	249	2397
	Warri South	24-Mar	02-Dec	253	2482
	Warri Southwest	23-Mar	03-Dec	255	2508
Ebonyi	Abakaliki	02-Apr	28-Nov	240	2209
	Afikpo North	28-Mar	30-Nov	248	2366
	Afikpo South	28-Mar	01-Dec	248	2374
	Ebonyi	05-Apr	26-Nov	235	2124
	Ezza North	02-Apr	28-Nov	240	2214
	Ezza South	31-Mar	29-Nov	242	2264
	Ikwo	30-Mar	29-Nov	243	2283
	Ishielu	04-Apr	26-Nov	237	2154
	Ivo	28-Mar	30-Nov	247	2356
	Izzi	05-Apr	26-Nov	235	2117
	Ohaozara	29-Mar	30-Nov	246	2326
	Ohaukwu	05-Apr	26-Nov	235	2131
	Onicha	31-Mar	29-Nov	243	2282
Edo	Akoko-Edo	17-Apr	19-Nov	216	1798
	Egor	03-Apr	27-Nov	238	2172
	Esan Central	08-Apr	24-Nov	230	2031
	Esan Northeast	09-Apr	24-Nov	229	2012
	Esan Southeast	06-Apr	25-Nov	233	2081
	Esan West	08-Apr	24-Nov	231	2050
	Etsako Central	12-Apr	22-Nov	225	1940
	Etsako East	15-Apr	20-Nov	219	1849
	Etsako West	12-Apr	22-Nov	224	1932
	Igueben	05-Apr	26-Nov	235	2115
	Ikpoba-Okha	01-Apr	28-Nov	241	2236
	Oredo	02-Apr	28-Nov	240	2216
	Orhionmwon	31-Mar	28-Nov	242	2255

	Ovia Northeast	04-Apr	26-Nov	236	2136
	Ovia Southwest	04-Apr	26-Nov	236	2137
	Owan East	13-Apr	21-Nov	222	1903
	Owan West	11-Apr	23-Nov	226	1960
	Uhunmwonde	05-Apr	26-Nov	235	2119
Ekiti	Ado-Ekiti	20-Apr	17-Nov	211	1721
	Efon	21-Apr	17-Nov	209	1704
	Ekiti East	22-Apr	16-Nov	208	1678
	Ekiti Southwest	20-Apr	18-Nov	212	1744
	Ekiti West	22-Apr	17-Nov	209	1696
	Emure/Ise/Orun	18-Apr	18-Nov	214	1772
	Aiyekire (Gbonyin)	21-Apr	17-Nov	210	1718
	Ido/Osi	24-Apr	15-Nov	205	1641
	Ijero	23-Apr	16-Nov	206	1658
	Ikere	19-Apr	18-Nov	213	1758
	Ikole	24-Apr	15-Nov	205	1637
	Ilejemeji	25-Apr	15-Nov	204	1621
	Irepodun/Ifelodun	22-Apr	16-Nov	209	1693
Enugu	Ise/Orun	18-Apr	18-Nov	214	1772
	Moba	25-Apr	14-Nov	203	1610
	Oye	24-Apr	15-Nov	205	1642
	Aninri	30-Mar	29-Nov	244	2297
	Awgu	01-Apr	28-Nov	242	2248
	Enugu East	06-Apr	25-Nov	233	2087
	Enugu North	05-Apr	26-Nov	235	2130
	Enugu South	04-Apr	26-Nov	236	2148
	Ezeagu	04-Apr	26-Nov	236	2151
	Igbo-Etiti	08-Apr	24-Nov	231	2045
	Igbo-Eze North	13-Apr	22-Nov	223	1916
	Igbo-Eze South	12-Apr	22-Nov	225	1941
	Isi-Uzo	08-Apr	24-Nov	229	2025
FCT	Nkanu East	02-Apr	27-Nov	239	2199
	Nkanu West	03-Apr	27-Nov	238	2178
	Nsukka	10-Apr	23-Nov	227	1980
	Oji-River	01-Apr	28-Nov	241	2241
	Udenu	10-Apr	23-Nov	227	1976
	Udi	05-Apr	26-Nov	235	2131
	Uzo-Uwani	08-Apr	24-Nov	230	2033
	Abaji	15-May	08-Nov	177	1498
	Abuja Municipal	18-May	14-Nov	180	1420
	Bwari	21-May	12-Nov	175	1321
	Gwagwalada	16-May	13-Nov	181	1226
	Kuje	13-May	16-Nov	187	1508
Gombe	Kwali	16-May	16-Nov	184	1577
	Akko	04-Jun	10-Oct	127	1017
	Balanga	31-May	12-Oct	133	1061
	Billiri	01-Jun	11-Oct	132	1055
	Dukku	14-Jun	04-Oct	113	711
	Funakaye	13-Jun	05-Oct	113	721
	Gombe	07-Jun	08-Oct	124	1143
	Kaltungo	01-Jun	12-Oct	133	1055
	Kwami	10-Jun	07-Oct	119	963

	Nafada	17-Jun	02-Oct	107	701
	Shomgom	29-May	13-Oct	137	1089
	Yamaltu/Deba	06-Jun	22-Oct	138	996
Imo	Aboh-Mbaise	22-Mar	04-Dec	257	2316
	Ahiazu-Mbaise	23-Mar	03-Dec	255	2268
	Ehime-Mbano	25-Mar	02-Dec	252	2209
	Ezinihitte	22-Mar	04-Dec	256	2300
	Ideato North	27-Mar	01-Dec	248	2132
	Ideato South	27-Mar	01-Dec	249	2158
	Ihitte/Uboma	25-Mar	02-Dec	253	2225
	Ikeduru	23-Mar	03-Dec	255	2267
	Isiala Mbano	25-Mar	02-Dec	252	2209
	Isu	25-Mar	02-Dec	252	2207
	Mbaitoli	24-Mar	03-Dec	254	2249
	Ngor-Okpala	20-Mar	05-Dec	259	2369
	Njaba	26-Mar	02-Dec	251	2193
	Nkwerre	26-Mar	02-Dec	251	2184
	Nwangele	25-Mar	02-Dec	251	2196
	Obowo	23-Mar	03-Dec	255	2270
	Oguta	25-Mar	02-Dec	253	2225
	Ohaji/Egbema	21-Mar	04-Dec	257	2327
	Okigwe	27-Mar	01-Dec	249	2153
	Orlu	27-Mar	01-Dec	249	2154
	Orsu	28-Mar	01-Dec	248	2128
	Oru East	26-Mar	02-Dec	251	2184
	Oru West	26-Mar	01-Dec	250	2174
	Owerri-Municipal	22-Mar	03-Dec	256	2297
	Owerri North	22-Mar	04-Dec	257	2313
	Owerri West	22-Mar	04-Dec	257	2323
	Unuimo	26-Mar	01-Dec	250	2167
Jigawa	Auyo	17-Jun	01-Oct	106	773
	Babura	22-Jun	28-Sept	99	775
	Biriniwa	23-Jun	28-Sept	97	778
	Birnin Kudu	06-Jun	07-Oct	123	998
	Buji	06-Jun	07-Oct	123	997
	Dutse	10-Jun	05-Oct	117	984
	Gagarawa	19-Jun	30-Sept	102	773
	Garki	18-Jun	30-Sept	104	773
	Gumel	21-Jun	29-Sept	100	775
	Guri	21-Jun	29-Sept	99	775
	Gwaram	02-Jun	09-Oct	129	915
	Gwiwa	22-Jun	28-Sept	98	776
	Hadejia	19-Jun	30-Sept	104	773
	Jahun	14-Jun	03-Oct	111	776
	Kafin Hausa	15-Jun	02-Oct	109	774
	Kaugama	19-Jun	30-Sept	103	773
	Kazaure	22-Jun	28-Sept	99	775
	Kiri Kasamma	20-Jun	29-Sept	101	774
	Kiyawa	11-Jun	05-Oct	116	882
	Maigatari	23-Jun	28-Sept	97	777
	Malam Madori	20-Jun	29-Sept	101	774
	Miga	16-Jun	02-Oct	108	774

	Ringim	15-Jun	02-Oct	110	775
	Roni	21-Jun	29-Sept	100	775
	Sule Tankarkar	22-Jun	28-Sept	99	776
	Taura	16-Jun	02-Oct	108	774
	Yankwashi	22-Jun	28-Sept	97	777
Kaduna	Birnin-Gwari	31-May	08-Oct	130	1049
	Chikun	25-May	12-Oct	140	1101
	Giwa	10-Jun	06-Oct	118	1026
	Igabi	28-May	10-Oct	134	1071
	Ikara	05-Jun	05-Oct	122	1014
	Jaba	22-May	19-Oct	150	1256
	Jema'a	20-May	20-Oct	154	1286
	Kachia	21-May	16-Oct	149	1192
	Kaduna North	27-May	10-Oct	137	1082
	Kaduna South	26-May	11-Oct	138	1089
	Kagarko	19-May	19-Oct	153	1267
	Kajuru	28-May	13-Oct	137	1117
	Kaura	24-May	18-Oct	147	1225
	Kauru	28-May	13-Oct	139	1134
	Kubau	04-Jun	08-Oct	126	1045
	Kudan	06-Jun	05-Oct	121	1016
	Lere	29-May	12-Oct	136	1115
	Markafi	08-Jun	05-Oct	119	1011
	Sabon-Gari	06-Jun	06-Oct	122	1022
	Sanga	27-May	21-Oct	147	1313
	Soba	05-Jun	07-Oct	124	1037
	Zango-Kataf	26-May	16-Oct	143	1194
	Zaria	07-Jun	07-Oct	122	1030
Kano	Ajingi	12-Jun	10-Oct	120	1030
	Albasu	08-Jun	12-Oct	126	879
	Bagwai	14-Jun	09-Oct	117	890
	Bebeji	06-Jun	13-Oct	129	676
	Bichi	16-Jun	07-Oct	113	896
	Bunkure	08-Jun	12-Oct	126	673
	Dala	13-Jun	09-Oct	119	890
	Dambatta	18-Jun	06-Oct	110	777
	Dawakin Kudu	10-Jun	11-Oct	123	673
	Dawakin Tofa	14-Jun	08-Oct	116	884
	Doguwa	29-May	18-Oct	141	675
	Fagge	13-Jun	09-Oct	119	1010
	Gabasawa	14-Jun	09-Oct	116	878
	Garko	07-Jun	13-Oct	128	675
	Garum Mallam	08-Jun	12-Oct	126	794
	Gaya	10-Jun	11-Oct	123	790
	Gezawa	13-Jun	09-Oct	118	784
	Gwale	12-Jun	10-Oct	119	677
	Gwarzo	11-Jun	10-Oct	121	778
	Kabo	11-Jun	10-Oct	121	780
	Kano Municipal	12-Jun	10-Oct	120	987
	Karaye	10-Jun	11-Oct	124	779
	Kibiya	06-Jun	13-Oct	129	785
	Kiru	07-Jun	12-Oct	127	798

	Kumbotso	12-Jun	10-Oct	120	792
	Kunchi	18-Jun	06-Oct	110	780
	Kura	10-Jun	11-Oct	124	673
	Madobi	10-Jun	11-Oct	122	785
	Makoda	18-Jun	06-Oct	110	783
	Minjibir	15-Jun	08-Oct	115	673
	Nasarawa	13-Jun	09-Oct	118	674
	Rano	06-Jun	13-Oct	129	677
	Rimin Gado	12-Jun	10-Oct	120	798
	Rogo	06-Jun	13-Oct	128	780
	Shanono	13-Jun	09-Oct	118	796
	Sumaila	04-Jun	14-Oct	132	676
	Takai	05-Jun	14-Oct	130	805
	Tarauni	12-Jun	10-Oct	119	801
	Tofa	13-Jun	09-Oct	119	778
	Tsanyawa	16-Jun	07-Oct	113	777
	Tudun Wada	03-Jun	15-Oct	134	673
	Ungogo	13-Jun	09-Oct	118	812
	Warawa	12-Jun	10-Oct	120	677
	Wudil	09-Jun	11-Oct	124	780
Katsina	Bakori	16-Jun	10-Oct	116	672
	Batagarawa	04-Jul	01-Oct	89	462
	Batsari	03-Jul	01-Oct	91	459
	Baure	03-Jul	01-Oct	90	459
	Bindawa	01-Jul	02-Oct	93	457
	Charanchi	30-Jun	03-Oct	95	455
	Dandume	14-Jun	12-Oct	120	683
	Danja	14-Jun	12-Oct	120	684
	Dan Musa	25-Jun	06-Oct	103	504
	Daura	05-Jul	30-Sept	86	416
	Dutsi	04-Jul	30-Sept	88	413
	Dutsin-Ma	27-Jun	04-Oct	99	503
	Faskari	17-Jun	10-Oct	115	620
	Funtua	14-Jun	12-Oct	119	770
	Ingawa	30-Jun	03-Oct	94	405
	Jibia	06-Jul	30-Sept	86	416
	Kafur	17-Jun	10-Oct	116	671
	Kaita	08-Jul	28-Sept	83	424
	Kankara	21-Jun	08-Oct	108	508
	Kankia	28-Jun	04-Oct	98	403
	Katsina	06-Jul	30-Sept	86	416
	Kurfi	02-Jul	02-Oct	92	407
	Kusada	28-Jun	04-Oct	97	503
	Mai'adua	07-Jul	29-Sept	83	423
	Malumfashi	20-Jun	09-Oct	111	512
	Mani	04-Jul	01-Oct	89	412
	Mashi	07-Jul	29-Sept	83	423
	Matazu	25-Jun	05-Oct	102	403
	Musawa	23-Jun	07-Oct	106	406
	Rimi	03-Jul	01-Oct	90	410
	Sabuwa	13-Jun	12-Oct	122	538
	Safana	29-Jun	04-Oct	97	404

	Sandamu	04-Jul	30-Sept	88	413
	Zango	05-Jul	30-Sept	87	415
Kebbi	Aleiro	03-Jul	29-Sept	88	653
	Arewa-Dandi	08-Jul	27-Sept	80	655
	Argungu	08-Jul	27-Sept	80	655
	Augie	12-Jul	24-Sept	74	663
	Bagudo	13-Jun	06-Oct	115	686.395
	Birnin Kebbi	05-Jul	28-Sept	85	652.981
	Bunza	01-Jul	01-Oct	91	655.282
	Dandi	19-Jun	03-Oct	105	662.639
	Danko Wasagu	14-Jun	06-Oct	113	780.059
	Fakai	15-Jun	05-Oct	112	778.336
	Gwandum	06-Jul	28-Sept	84	653.14
	Jega	01-Jul	01-Oct	92	655.346
	Kalgo	25-Jun	29-Sept	96	653.34
	Koko/Besse	14-Jun	06-Oct	114	682.511
	Maiyama	21-Jun	02-Oct	103	658.675
	Ngaski	03-Jun	12-Oct	131	855.873
	Sakaba	11-Jun	08-Oct	119	699.76
	Shanga	11-Jun	07-Oct	118	794.627
	Suru	18-Jun	04-Oct	108	767.356
	Yauri	07-Jun	09-Oct	124	969.034
	Zuru	15-Jun	05-Oct	112	776.983
Kogi	Adavi	01-May	30-Oct	182	1515
	Ajaokuta	28-Apr	31-Oct	186	1575
	Ankpa	28-Apr	01-Nov	187	1586
	Bassa	02-May	29-Oct	180	1484
	Dekina	29-Apr	31-Oct	184	1550
	Ibaji	19-Apr	05-Nov	200	1802
	Idah	23-Apr	03-Nov	194	1707
	Igalamela-Odolu	23-Apr	03-Nov	195	1709
	Ijumu	03-May	29-Oct	178	1459
	Kabba/Bunu	06-May	27-Oct	174	1397
	Kogi	09-May	26-Oct	170	1348
	Lokoja	09-May	26-Oct	170	1350
	Mopa-Muro	08-May	26-Oct	172	1370
	Ofu	27-Apr	01-Nov	189	1615
	Ogori/Magongo	29-Apr	31-Oct	186	1568
	Okehi	02-May	29-Oct	181	1497
	Okene	28-Apr	31-Oct	186	1573
	Olamabolo	25-Apr	02-Nov	192	1668
	Omala	03-May	29-Oct	179	1477
	Yagba East	08-May	26-Oct	171	1367
	Yagba West	09-May	25-Oct	169	1336
Kwara	Asa	12-May	24-Oct	165	1285
	Baruten	22-May	18-Oct	148	1104
	Edu	18-May	20-Oct	155	1170
	Ekiti	07-May	27-Oct	173	1384
	Ifelodun	14-May	23-Oct	162	1244
	Ilorin East	14-May	23-Oct	162	1253
	Ilorin South	12-May	24-Oct	165	1282
	Ilorin West	12-May	23-Oct	164	1275

	Irepodun	08-May	26-Oct	171	1356
	Isin	09-May	25-Oct	169	1336
	Kaiama	25-May	17-Oct	145	1070
	Moro	18-May	20-Oct	156	1179
	Offa	08-May	26-Oct	171	1362
	Oke-Ero	08-May	26-Oct	171	1365
	Oyun	08-May	26-Oct	171	1360
	Pategi	15-May	22-Oct	160	1228
Lagos	Agege	31-Mar	02-Dec	245	1923
	Ajeromi-Ifelodun	29-Mar	03-Dec	249	1991
	Alimosho	31-Mar	02-Dec	246	1937
	Amuwo-Odofin	28-Mar	03-Dec	250	2007
	Apapa	28-Mar	03-Dec	250	2009
	Badagry	28-Mar	03-Dec	250	2010
	Epe	29-Mar	03-Dec	249	1984
	Eti-Osa	28-Mar	03-Dec	250	2002
	Ibeju/Lekki	28-Mar	03-Dec	250	2005
	Ifako-Ijaye	01-Apr	01-Dec	244	1908
	Ikeja	31-Mar	02-Dec	246	1932
	Ikorodu	31-Mar	02-Dec	246	1935
	Kosofe	31-Mar	02-Dec	246	1938
	Lagos Island	30-Mar	02-Dec	248	1968
	Lagos Mainland	29-Mar	03-Dec	248	1974
	Mushin	30-Mar	02-Dec	247	1957
	Ojo	29-Mar	03-Dec	249	1999
	Oshodi-Isolo	30-Mar	02-Dec	247	1952
	Shomolu	30-Mar	02-Dec	247	1956
	Surulere	29-Mar	03-Dec	248	1912
Nasarawa	Akwanga	21-May	19-Oct	151	1292
	Awe	10-May	25-Oct	168	1489
	Doma	09-May	26-Oct	170	1513
	Karu	22-May	18-Oct	149	1273
	Keana	10-May	26-Oct	169	1503
	Keffi	18-May	21-Oct	155	1339
	Kokona	20-May	20-Oct	153	1314
	Lafia	16-May	22-Oct	158	1372
	Nasarawa	12-May	24-Oct	166	1459
	Nassarawa Egon	17-May	21-Oct	157	1362
	Obi	12-May	24-Oct	166	1461
	Toto	11-May	25-Oct	167	1475
	Wamba	21-May	19-Oct	151	1295
Niger	Agaie	19-May	15-Oct	149	1321
	Agwara	14-Jun	01-Oct	109	1010
	Bida	22-May	14-Oct	145	1282
	Borgu	09-Jun	04-Oct	117	1055
	Bosso	29-May	10-Oct	134	1181
	Chanchaga	29-May	10-Oct	134	1176
	Edati	21-May	14-Oct	147	1298
	Gbako	24-May	12-Oct	141	1243
	Gurara	25-May	12-Oct	140	1236
	Katcha	22-May	14-Oct	145	1282
	Kontagora	09-Jun	04-Oct	116	1050

	Lapai	19-May	15-Oct	150	1329
	Lavun	23-May	13-Oct	144	1267
	Magama	08-Jun	04-Oct	118	1058
	Mariga	13-Jun	02-Oct	111	1020
	Mashengu	31-May	08-Oct	130	1147
	Mokwa	23-May	13-Oct	144	1268
	Muya	31-May	08-Oct	130	1146
	Paikoro	27-May	11-Oct	137	1202
	Rafi	05-Jun	06-Oct	122	1086
	Rijau	17-Jun	29-Sept	104	984
	Shiroro	03-Jun	07-Oct	126	1113
	Suleja	23-May	13-Oct	143	1260
	Tafa	24-May	12-Oct	141	1245
	Wushishi	29-May	09-Oct	133	1170
Ogun	Abeokuta North	14-Apr	27-Nov	227	1430
	Abeokuta South	13-Apr	27-Nov	229	1454
	Ado-Odo/Ota	05-Apr	02-Dec	241	1656
	Egbado North	12-Apr	28-Nov	230	1468
	Egbado South	08-Apr	30-Nov	237	1584
	Ewekoro	10-Apr	29-Nov	233	1529
	Ifo	07-Apr	01-Dec	238	1600
	Ijebu East	09-Apr	30-Nov	235	1557
	Ijebu North	07-Apr	01-Dec	238	1598
	Ijebu Northeast	10-Apr	29-Nov	232	1510
	Ijebu Ode	07-Apr	30-Nov	237	1592
	Ikenne	09-Apr	29-Nov	234	1541
	Imeko-Afon	19-Apr	24-Nov	219	1296
	Ipokia	05-Apr	02-Dec	241	1656
	Obafemi-Owode	10-Apr	29-Nov	234	1530
	Odeda	14-Apr	27-Nov	226	1413
	Odogbolu	08-Apr	30-Nov	236	1579
	Ogun waterside	02-Apr	03-Dec	246	1743
	Remo North	10-Apr	29-Nov	233	1514
	Shagamu	08-Apr	30-Nov	236	1580
Ondo	Akoko North-East	18-Apr	25-Nov	221	1326
	Akoko South-East	16-Apr	25-Nov	223	1360
	Akoko South-West	16-Apr	26-Nov	224	1376
	Akoko North-West	19-Apr	24-Nov	218	1289
	Akure North	13-Apr	27-Nov	228	1433
	Akure South	13-Apr	27-Nov	228	1442
	Ese-Odo	31-Mar	04-Dec	248	1790
	Idanre	10-Apr	29-Nov	233	1523
	Ifedore	15-Apr	26-Nov	225	1394
	Ilaje	29-Mar	06-Dec	252	1868
	Ile-Oluji-Okeigbo	14-Apr	27-Nov	227	1417
	Irele	04-Apr	02-Dec	242	1686
	Odigbo	06-Apr	01-Dec	239	1617
	Okitipupa	04-Apr	02-Dec	242	1676
	Ondo East	11-Apr	28-Nov	231	1491
	Ondo West	10-Apr	29-Nov	232	1511
	Ose	11-Apr	28-Nov	231	1490
	Owo	12-Apr	28-Nov	230	1469

Osun	Atakumosa East	15-Apr	26-Nov	225	1397
	Atakumosa West	18-Apr	25-Nov	221	1332
	Aiyedade	15-Apr	26-Nov	225	1399
	Aiyedire	18-Apr	25-Nov	221	1326
	Boluwaduro	23-Apr	22-Nov	213	1213
	Boripe	22-Apr	22-Nov	214	1236
	Ede North	20-Apr	23-Nov	217	1277
	Ede South	19-Apr	24-Nov	219	1297
	Egbedore	21-Apr	23-Nov	216	1258
	Ejigbo	21-Apr	23-Nov	216	1255
	Ife East	15-Apr	26-Nov	225	1396
	Ife North	14-Apr	27-Nov	227	1430
	Ife South	13-Apr	27-Nov	227	1431
	IfeCentral	17-Apr	25-Nov	223	1356
	Ifedayo	23-Apr	21-Nov	212	1205
	Ifelodun	23-Apr	22-Nov	213	1217
	Ila	23-Apr	21-Nov	212	1206
	Ilesha East	18-Apr	24-Nov	220	1315
	Ilesha West	19-Apr	24-Nov	219	1300
	Irepodun	22-Apr	22-Nov	214	1233
	Irewole	16-Apr	26-Nov	224	1380
	Isokan	14-Apr	27-Nov	227	1418
	Iwo	19-Apr	24-Nov	219	1300
	Obokun	21-Apr	23-Nov	216	1260
	Odo-Otin	24-Apr	21-Nov	212	1197
	Ola-Oluwa	20-Apr	23-Nov	217	1270
	Olorunda	22-Apr	22-Nov	215	1238
	Oriade	17-Apr	25-Nov	221	1335
	Orolu	22-Apr	22-Nov	214	1225
	Osogbo	21-Apr	23-Nov	216	1264
Oyo	Afijio	21-Apr	23-Nov	216	1263
	Akinyele	18-Apr	25-Nov	221	1333
	Atiba	27-Apr	19-Nov	206	1120
	Atigbo	29-Apr	18-Nov	204	1094
	Egbeda	15-Apr	26-Nov	224	1382
	Ibadan North	16-Apr	26-Nov	224	1372
	Ibadan Northeast	15-Apr	26-Nov	225	1385
	Ibadan Northwest	16-Apr	26-Nov	224	1375
	Ibadan Southeast	15-Apr	26-Nov	225	1397
	Ibadan Southwest	15-Apr	26-Nov	225	1390
	Ibarapa Central	16-Apr	25-Nov	223	1362
	Ibarapa East	19-Apr	24-Nov	219	1306
	Ibarapa North	19-Apr	24-Nov	219	1298
	Ido	17-Apr	25-Nov	222	1344
	Irepo	08-May	13-Nov	190	933
	Iseyin	22-Apr	22-Nov	215	1239
	Itesiwaju	26-Apr	20-Nov	207	1138
	Iwajowa	24-Apr	21-Nov	212	1198
	Kajola	24-Apr	21-Nov	210	1179
	Lagelu	17-Apr	25-Nov	222	1350
	Ogbomosho North	26-Apr	20-Nov	208	1147
	Ogbomosho South	25-Apr	20-Nov	209	1167

	Ogo Oluwa	23-Apr	21-Nov	212	1205
	Olorunsogo	05-May	15-Nov	194	983
	Oluyole	13-Apr	27-Nov	228	1445
	Ona-Ara	14-Apr	27-Nov	227	1421
	Orelope	05-May	15-Nov	194	976
	Ori Ire	28-Apr	19-Nov	204	1100
	Oyo East	22-Apr	22-Nov	214	1227
	Oyo West	23-Apr	22-Nov	213	1219
	Saki East	04-May	16-Nov	196	1003
	Saki West	02-May	17-Nov	198	1030
	Surulere	25-Apr	21-Nov	210	1169
Plateau	Barikin Ladi	21-May	12-Oct	144	1206
	Bassa	26-May	09-Oct	135	1133
	Bokkos	15-May	15-Oct	153	1281
	Jos East	24-May	10-Oct	139	1163
	Jos North	25-May	10-Oct	138	1151
	Jos South	23-May	11-Oct	141	1174
	Kanam	19-May	13-Oct	146	1223
	Kanke	18-May	13-Oct	148	1242
	Langtang North	13-May	16-Oct	156	984
	Langtang South	07-May	19-Oct	165	1232
	Mangu	18-May	13-Oct	148	1241
	Mikang	13-May	16-Oct	156	1318
	Pankshin	16-May	15-Oct	151	1271
	Qua'an Pan	10-May	18-Oct	160	1363
	Riyom	20-May	12-Oct	145	1211
	Shendam	10-May	18-Oct	161	1366
	Wase	13-May	05-Nov	163	1310
River	Abua/Odual	07-Mar	15-Dec	284	2678
	Ahodata East	09-Mar	14-Dec	280	2585
	Ahodata West	09-Mar	14-Dec	280	2597
	Akuku Toru	02-Mar	18-Dec	290	2841
	Andoni	02-Mar	18-Dec	290	2840
	Asari-Toru	05-Mar	16-Dec	286	2735
	Bonny	02-Mar	18-Dec	291	2845
	Degema	03-Mar	17-Dec	289	2811
	Eleme	05-Mar	16-Dec	286	2740
	Emohua	06-Mar	15-Dec	284	2689
	Etche	09-Mar	14-Dec	279	2582
	Gokana	04-Mar	17-Dec	288	2778
	Ikwerre	09-Mar	14-Dec	279	2584
	Khana	04-Mar	17-Dec	288	2789
	Obia/Akpor	06-Mar	16-Dec	285	2704
	Ogba/Egbema/Ndoni	14-Mar	11-Dec	272	2422
	Ogu/Bolo	04-Mar	17-Dec	288	2778
	Okrika	04-Mar	17-Dec	288	2780
	Omumma	10-Mar	13-Dec	279	2564
	Opobo/Nkoro	02-Mar	18-Dec	291	2846
	Oyigbo	07-Mar	15-Dec	284	2681
	Port-Harcourt	05-Mar	16-Dec	286	2729
	Tai	05-Mar	16-Dec	286	2736
Sokoto	Binji	09-Jul	17-Sept	70	601

	Bodinga	04-Jul	20-Sept	78	586
	Dange-Shuni	05-Jul	20-Sept	77	587
	Gada	15-Jul	14-Sept	60	634
	Goronyo	11-Jul	16-Sept	67	611
	Gudu	13-Jul	15-Sept	64	619
	Gwadabawa	13-Jul	15-Sept	65	617
	Illela	15-Jul	14-Sept	60	633
	Isa	10-Jul	17-Sept	69	603
	Kebbe	22-Jun	27-Sept	97	585
	Kware	08-Jul	18-Sept	72	598
	Rabah	07-Jul	18-Sept	73	594
	Sabon Birni	13-Jul	15-Sept	63	622
	Shagari	30-Jun	22-Sept	84	580
	Silame	06-Jul	19-Sept	74	592
	Sokoto North	07-Jul	18-Sept	73	595
	Sokoto South	07-Jul	18-Sept	73	594
	Tambuwal	28-Jun	23-Sept	87	579
	Tangaza	13-Jul	15-Sept	64	621
	Tureta	30-Jun	22-Sept	84	580
	Wamako	07-Jul	18-Sept	73	594
	Wurno	10-Jul	17-Sept	69	606
	Yabo	03-Jul	20-Sept	79	584
Taraba	Ardo-Kola	10-May	23-Oct	165	1042
	Bali	30-Apr	29-Oct	182	1241
	Donga	24-Apr	01-Nov	191	1367
	Gashaka	21-Apr	02-Nov	195	1436
	Gassol	04-May	26-Oct	175	1159
	Ibi	03-May	27-Oct	176	1174
	Jalingo	11-May	22-Oct	164	1026
	Karim-Lamido	15-May	20-Oct	158	967
	Kurmi	17-Apr	05-Nov	202	1535
	Lau	15-May	20-Oct	159	973
	Sardauna	13-Apr	07-Nov	208	1640
	Takum	21-Apr	02-Nov	195	1439
	Ussa	14-Apr	06-Nov	206	1616
	Wukari	29-Apr	29-Oct	183	1262
	Yorro	11-May	22-Oct	164	1031
	Zing	11-May	22-Oct	164	1028
Yobe	Bade	03-Jul	18-Sept	77	583
	Bursari	02-Jul	18-Sept	78	582
	Damaturu	20-Jun	25-Sept	96	588
	Fika	15-Jun	28-Sept	105	608
	Fune	21-Jun	25-Sept	96	588
	Geidam	02-Jul	18-Sept	79	582
	Gujba	14-Jun	28-Sept	106	613
	Gulani	09-Jun	01-Oct	115	644
	Jakusko	29-Jun	20-Sept	83	579
	Karasuwa	05-Jul	16-Sept	73	589
	Machina	07-Jul	15-Sept	70	595
	Nangere	20-Jun	25-Sept	97	589
	Nguru	06-Jul	16-Sept	72	590
	Potiskum	19-Jun	26-Sept	99	593

	Tarmua	26-Jun	21-Sept	87	579
	Yunusari	09-Jul	15-Sept	68	599
	Yusufari	09-Jul	14-Sept	67	603
Zamfara	Anka	23-Jun	23-Sept	92	683
	Bakura	30-Jun	19-Sept	81	680
	Birnin Magaji	30-Jun	20-Sept	82	679
	Bukkuyum	22-Jun	24-Sept	93	684
	Bungudu	25-Jun	22-Sept	89	680
	Gummi	22-Jun	24-Sept	94	784
	Gusau	22-Jun	24-Sept	94	786
	Kaura Namoda	30-Jun	19-Sept	82	680
	Maradun	03-Jul	18-Sept	77	684
	Maru	19-Jun	26-Sept	99	793
	Shinkafi	07-Jul	16-Sept	71	692
	Talata Mafara	28-Jun	20-Sept	84	679
	Tsafe	21-Jun	24-Sept	95	686
	Zurmi	05-Jul	17-Sept	74	688

Glossary

1. **Accumulated Rainfall** is the total amount of rainfall collected over a specific period, which may be relevant when assessing pre-season rainfall and its sufficiency for early crop growth or water management.
2. **Adaptation** is adjusting systems, practices, and policies to reduce vulnerabilities and improve resilience to current or expected climate impacts.
3. **Agro-meteorological information** is weather and climate information that, if applied to guide agricultural activities, improves yields and enhances coping strategies against the adverse impact of climate-related hazards in the sector.
4. **Annual rainfall amount** is the total amount of rainfall observed and recorded in the year under reference.
5. **Antibiotics** are Medications used to prevent and treat bacterial infections by killing the bacteria or inhibiting their growth.
6. **Antimicrobial Resistance (AMR)** is the ability of microorganisms (bacteria, viruses, fungi, parasites) to resist the effects of medications that once successfully treated infections.
7. **Aquaculture** is the cultivation of aquatic organisms (e.g., fish, shellfish, seaweed) in controlled environments for food, research, or restoration.
8. **Cessation date of rainy season** marks the end of the season in a state and occurs when the water content in the soil's root zone drops below 20% needed for plant growth without supplemental irrigation.
9. **Climate change** refers to a change in the state of the *climate* that can be identified (e.g., by using statistical tests) by changes in the mean and/or the variability of its properties and that persists for an extended period, typically decades or longer, due to natural and human-induced changes in climate. It could result in changes in temperature, precipitation, wind patterns, and other elements of the climate system.
10. **Climate variability** refers to **fluctuations in climate conditions** that occur over short to medium time scales (e.g., from months to decades) and are caused by both natural processes and phenomena. These variations can result in periods of **warmer or cooler** temperatures, **wetter or drier conditions**, and other shifts in climate patterns.
11. **Comfort Index** is a measure used to assess how comfortable the environment is for human health and activity. It combines various environmental factors such as **temperature, humidity, wind speed, and solar radiation** to assess overall comfort.

12. **Decision Support System for Agrotechnology Transfer (DSSAT)** is an advanced, comprehensive computer-based simulation model used for crop modelling and agricultural research.
13. **Dehydration** is a condition that occurs when the body loses more fluids than it takes in, resulting in an inadequate amount of water and electrolytes necessary for normal body functions.
14. **Departure** describes the extent to which the current climatic condition deviates from the expected or normal climatic conditions for a specific period, such as a month, season, or year.
15. **Diarrhoea** is characterized by **frequent, loose or watery stools** that occur three or more times per day than normal.
16. **Drought** is a prolonged period of low or no rainfall that leads to a shortage of water, affecting ecosystems, agriculture, and human activities.
17. **Dry-season farming** refers to cultivating crops during the dry or non-rainy period.
18. **Dry Spells** are periods of minimal or no rainfall within a season, often occurring due to suppressed phases of oscillations. This potentially impacts crop growth and water availability for farming.
19. **Early Warning System (EWS)** is a comprehensive system designed to provide timely information to help reduce the risk and impact of natural hazards such as severe weather, climate, or hydrological events.
20. **Ecological Zones** refer to regions or areas characterized by distinct climatic and environmental conditions that influence the types of ecosystems within them.
21. **El Niño** is a complex climate phenomenon characterized by the periodic warming of sea surface temperatures in the **central and eastern Pacific Ocean**, significantly impacting global weather patterns, climate variability, and ecosystems.
22. **El Niño-Southern Oscillation (ENSO)** is a climate pattern representing the interaction between the **ocean and atmosphere** in the **tropical Pacific Ocean**. ENSO significantly influences global weather and climate, leading to variations in temperature, precipitation, and atmospheric pressure patterns worldwide.
23. **ENSO-Neutral** is a phase when sea surface temperatures and atmospheric conditions in the tropical Pacific do not show significant deviations from average, resulting in normal climate patterns.
24. **Extreme Rainfall Event** is a weather event where rainfall exceeds the typical annual or daily average in a short period, often leading to flooding.
25. **Extreme weather** refers to unusual, severe, or unseasonal weather conditions that deviate significantly from the typical climate of a region. Extreme weather events are characterized by their intensity, duration, and impact on human life, ecosystems, and infrastructure.

26. **Flash floods** are sudden surges of water that can submerge areas quickly, often resulting from localized, intense rainfall over a short period, or from the sudden release of water from a dam.
27. **Global warming** refers to the long-term increase in the Earth's average surface temperature due to human activities, primarily the emission of greenhouse gases such as carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O).
28. **Greenhouse effect** refers to the natural process by which the Earth's atmosphere traps some of the energy from the Sun, warming the planet and making it suitable for life.
29. **Harmattan** is a cold, dry, dusty, north-easterly trade wind from the Sahara that is predominant during the winter season over West Africa.
30. **Heat (Estrus)** is a recurring reproductive period in female animals during which they are fertile and sexually receptive to mating, marked by characteristic hormonal, physiological, and behavioural changes.
31. **Heat stress** occurs when the body cannot effectively cool itself and maintain a healthy temperature due to excessive heat.
32. **Heat stroke** is a serious medical emergency resulting from prolonged exposure to extreme heat, where the body fails to regulate its temperature, which can lead to critical damage to organs, dehydration, and even death if untreated.
33. **Heat waves** are typically defined as prolonged periods of excessively high temperatures, often accompanied by high humidity.
34. **High-intensity rainfall** is rainfall that is characterised by a high amount of precipitation, often lasting more than 10 hours, and may be accompanied by strong winds above 20 knots.
35. **Hydroelectric Power** is electricity generated by harnessing the kinetic and potential energy of moving or falling water, typically using turbines and generators.
36. **Intergovernmental Panel on Climate Change (IPCC)** is an international body established by the United Nations and the World Meteorological Organization (WMO) to assess the science related to climate change, its impacts, and potential adaptation and mitigation strategies.
37. **Indian Ocean Dipole (IOD)** is a climate phenomenon characterized by the difference in sea surface temperatures (SSTs) between the western and eastern parts of the equatorial Indian Ocean.
38. **Intra-seasonal rainfall patterns** refer to variations in rainfall distribution and intensity that occur within a single season.
39. **La Niña** is a climate pattern characterized by the periodic cooling of sea surface temperatures in the central and eastern tropical Pacific Ocean.

40. **Length of rainy season** is the number of days between the **onset** and **cessation** of the rainy season
41. **Madden-Julian Oscillation (MJO)** is a major driver of intra-seasonal variability in the tropics, characterized by an eastward-moving wave of enhanced and suppressed convection (rainfall) that travels around the globe along the equator over 30 to 60 days.
42. **Meningitis** is an inflammatory condition of the meninges, the protective membranes covering the brain and spinal cord. It can be caused by bacterial, viral, fungal, or parasitic infections, as well as by non-infectious factors such as certain drugs or diseases. Meningitis, particularly **cerebrospinal meningitis**, is viewed as a climate-sensitive disease.
43. **Mid-Latitude Wave (MLW)** is a large-scale disturbance in the mid-latitude westerlies characterized by alternating (low pressure) troughs and ridges (high pressure). These waves arise from temperature contrasts between air masses and guide the movement of weather systems.
44. **Mitigation** is an action to reduce the rate or magnitude of climate change by curbing greenhouse gas emissions or enhancing carbon sequestration.
45. **Modulators** refer to variables or factors that can influence or modify atmospheric conditions and weather patterns.
46. **Monsoon** is a large-scale seasonal wind system characterized by a reversal of prevailing wind directions, usually accompanied by significant changes in precipitation.
47. **Northeasterly winds** are winds that blow from the northeast towards the southwest.
48. **Normal** is a term that refers to a period where an observed climate parameter is referenced over a standard baseline period, typically 30 years. **It could also be termed long-term average or climatological norm.**
49. **Near Normal** is a condition where a particular climate variable (such as temperature, precipitation, or atmospheric pressure) falls within a range that is close to the long-term average for that location and time.
50. **Neutral signal** is a state or condition that indicates neither an increase nor a decrease in the parameters being observed.
51. **Onset date of rainy season** is the date at which the available water content of the root zone at the beginning of the cropping season reaches 50%.
52. **Pathogen** is a microorganism (such as bacteria, viruses, fungi, or parasites) that can cause disease in plants, animals, or crops.

53. **Pre-Season Rainfall** is the term that refers to rainfall that occurs before the official start of a designated rainy season or monsoon period. They are usually short-lived and could come because of the periodic incursion of extra-tropical modulators
54. **Perishable Goods** are agricultural products that have a limited shelf life and can decay or spoil quickly if not stored or handled properly. Examples include fruits, vegetables, dairy products, meat, and seafood.
55. **Rainfall Anomaly** is the deviation of observed rainfall from the long-term average or expected value during a specific period.
56. **Renewable Energy** is energy from natural sources like solar, wind, and hydro, which produce little to no greenhouse gas emissions.
57. **Ruminant animals** are a unique type of livestock that are capable of regurgitating and re-chewing their food to aid in digestion through their four-chambered stomachs.
58. **Sustainable Development Goals (SDGs)** are a collection of 17 global objectives established by the United Nations in 2015 as part of the 2030 Agenda for Sustainable Development.
59. **Sea Surface Temperature Anomaly (SSTA)** is the difference between the observed SST and the average SST for a specific period (the baseline or climatology). Positive anomalies indicate warmer-than-average conditions, while negative anomalies indicate cooler-than-average conditions.
60. **Seasonal Climate Prediction** is the process of forecasting climate variables (such as temperature, precipitation, and drought) over a period of weeks to months (usually 1-12 months) ahead, typically focused on the upcoming season.
61. **Seasonal Forecasts** are predictions made for a specific season based on meteorological data, including rainfall totals and distribution projections.
62. **Short-duration rainfall** is defined as rainfall that occurs over a short time, typically less than an hour.
63. **Teleconnections** are large-scale, long-distance climate interactions that occur between different regions of the globe. These interactions are essential for understanding how weather patterns in one part of the world can influence weather and climate in other, often distant, regions.
64. **Warmer-than-Normal** refers to a period in which the average temperature is higher than the baseline or reference value for a specific region and time of year. The baseline is typically defined over a 30-year period (e.g., 1991–2020) and used to assess long-term climate trends.
65. **Wind shear** refers to the variation in wind speed and/or direction over a short distance in the atmosphere. It can occur in both the vertical and horizontal dimensions and is a critical factor in weather and aviation safety.

NiMet CONTACTS NATIONWIDE.

S/N	Names	States	Phone Number	E-mail Address
1.	Mr. Owhorukowho Goodnews	Abia	08067346449	i.goodnews@gmail.com
2.	Mr. Nicholas J. Eigege	Abuja/(FCT)	08057221023	n.eigege@nimetagency.org.ng
3.	Mr. G. K. Danye	Adamawa	08035512477	g.danyekwache@nimet.gov.ng
4.	Mrs. Bassey Nsidibe	Akwa Ibom	08067194945	bassey.nsidibe@nimetagency.org.ng
5.	Mr. Ameh Osita	Anambra	08038349779	osita.ameh@nimetagency.org.ng
6.	Mr. Stephen Bala	Bauchi	08029883300 08031540444	s.bala@nimet.gov.ng
7.	Mr. Olatunde Bakare	Bayelsa	08039632455 08027649131	b.olatunde@nimetagency.org.ng
8.	Mr. Abedoh, A. Tijani.	Benue	08066676435	a.ahamaddtijani@nimet.gov.ng
9.	Mr. Joseph O. Michael	Borno	08068113317	nimetmaiduguri@nimet.gov.ng
10.	Mr. Joseph Iyanam	Cross River	08059740971	j.iyanam@nimet.gov.ng
11.	Mr. Onyenobi O Kennedy	Delta	08035050810	o.kennedy@nimet.gov.ng
12.	Mr. Williams Timothy	Ebonyi	08039095002	t.william@nimet.gov.ng
13.	Mr. Nwainokpor E	Edo	09052445108	e.nwainokpor@nimet.gov.ng
14.	Mr. Orekoya A. Olusegun	Enugu	08034262130	adetola.orekoya@nimetagency.gov.ng
15.	Mr. Lawal Oludare	Ekiti	08068380251	o.lawal@nimet.gov.ng
16.	Mr. Gayus Musa	Gombe	08060941794	
17.	Mr. Inya Akunna A.	Imo	07033839524	a.inya@nimet.gov.ng
18.	Mr. Mohammed, K. A.	Jigawa	08067990231 08023921369	m.abdullahi@nimet.gov.ng
19.	Mrs. Uwem M. Williams	Kano	08060002255	Uwem.williams@nimetagency.org.ng
20.	Mr. Suleiman Mahmood	Kaduna	08031196409	mahmood.suleiman@nimetagency.org.ng
21.	Mr. Umar Hamza	Katsina	08035965929	h.umar@nimetagency.org.ng
22.	Mr. Bashir Aliyu	Kebbi	08136964190 09031313489	a.bashir@nimetagency.org.ng
23.	Miss Umar Ralia O.	Kogi	08057334354 08035984648	r.umar@nimet.gov.ng
24.	Mr. Bakare Olatayo	Kwara	08035759025	b.olatayo@nimet.gov.ng
25.	Mr. Sanwoolu Adedeji	Lagos	08036840852	a.sanwoolu@nimet.gov.ng
26.	Mr. Yakubu Samu	Nasarawa	08028981497	y.samu@nimet.gov.ng
27.	Mr. Pwajok, Gyang Tok.	Niger	08067731592	g.pwajok@nimet.gov.ng
28.	Mr. Oyewole Abayomi	Ogun	09092387540 08065568386	a.oyewole@nimet.gov.ng
29.	Mr. Adejuwon Emmanuel O.	Ondo	08125883607 08034782527	o.adejuwon@nimet.gov.ng
30.	Mr. Raheem Kayode	Osun	09083568698 08090814762	a.raheem@nimet.gov.ng

31	Mr. Udoth Emmanuel	Oyo	08060059599 08151972160	e.udoh@nimet.gov.ng
32	Mr. Kazachiang, T. V.	Plateau	08124088883	t.kazachiang@nimet.gov.ng
33	Mr. Francis B. Ikwen	Rivers	08054532629	francis.ikwen@nimetagency.org.ng
34	Mr. Yawale Baba	Sokoto	08034380940	yawale.baba@nimetagency.org.ng
35.	Mr. Amos N. Gimba	Taraba	08037333143	a.gimba@nimet.gov.ng
36	Mr. Sadiq Haruna Anate	Yobe	08065079205	s.haruna@nimet.gov.ng
37	Mr. Umar Farouk	Zamfara	08032897645	f.umar@nimet.gov.ng

ZONAL MANAGERS

S/N	NAMES	ZONE	PHONE NUMBER	EMAIL ADDRESS
1.	Mr. Adewara Hassan	Northwest	08034610077 08026815360	hassan.adewara@nimetagency.org.ng
2	Mr. Ifelaja Oluwaseyi A.	Southwest	08028636948	oluwaseyi.ifelaja@nimetagency.org.ng
3.	Mr. Osunyomi Christopher	Southeast	07038444558	oluwaseyi.osunyomi@nimetagency.org.ng
4.	Mrs. Lilian Bosco-Abiahu	South south	08107100488	l.bosco-abiahu@nimetagency.org.ng
5.	Mr. Joseph O. Michael	Northeast	08068113317	nimetmaiduguri@nimet.gov.ng
6.	Mr. Nicholas J. Eigege	North Central	08057221023	n.eigege@nimetagency.org.ng

Leadership Legacy

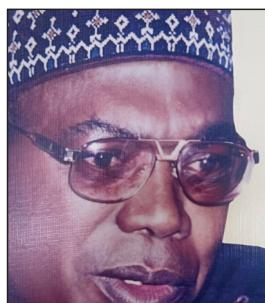
Former Director Generals & CEOs

J.K. Clackson BSc., O.B.E
(1947 - 1961)

A.W. Ireland
(1961 - 1963)

N. A. Akingbehin M.F.R, M.B.R.
*First Nigerian Director
 (Mar. 1963 - Sept. 1969)*

**M.C. Abayomi O.F.R., Bsc,
 (MC GILL), F.R. METS**
(Sept. 1969 - May 1983)


Isacc Oti Emore Bsc. London
(Mar. 1984 - Nov. 1987)

Joseph A. Adejokun
(Sept. 1987 - April 1993)

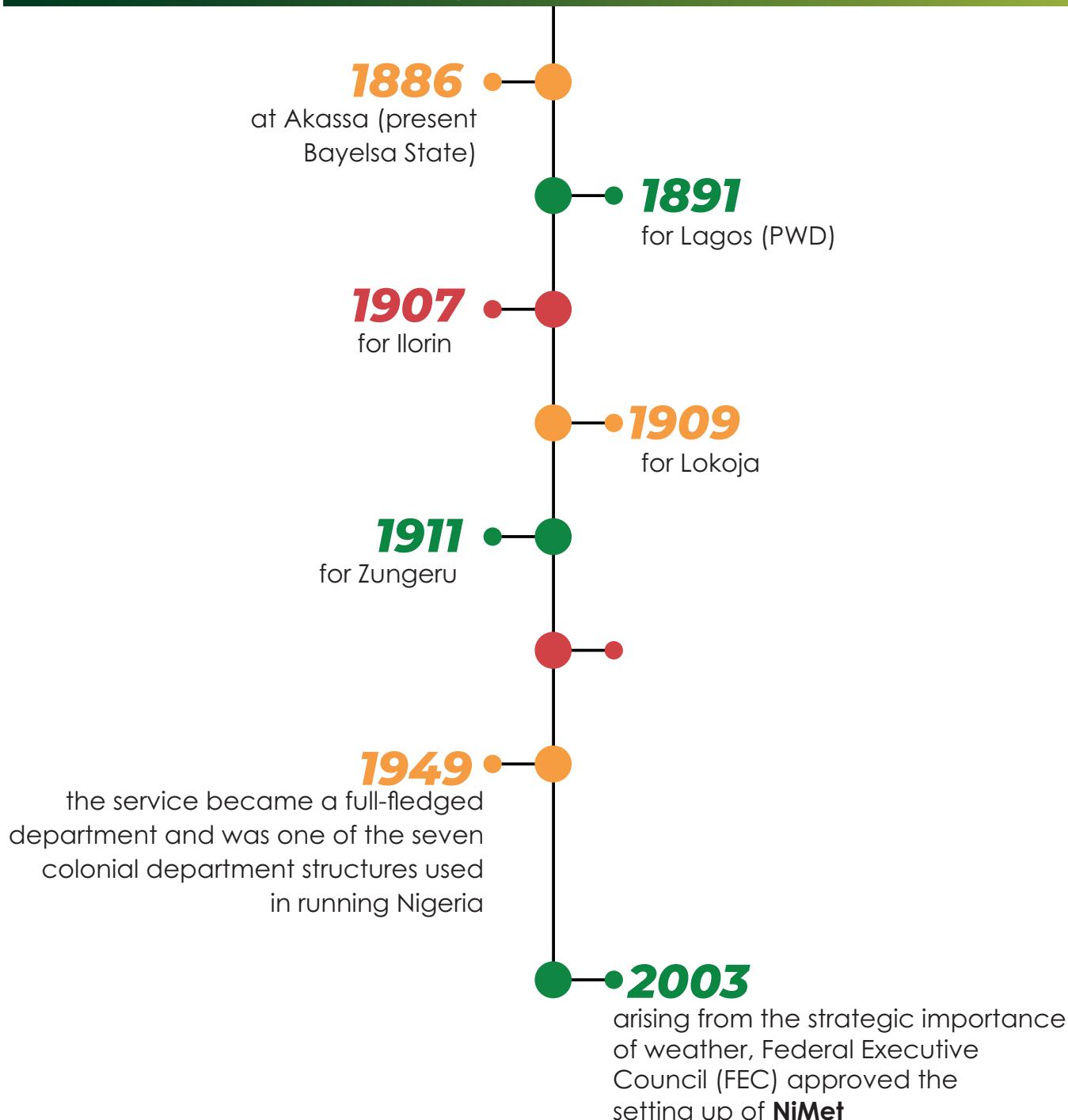
Alhaji R.R Rufai
(Jul. 1993 - Dec 1994)

Alhaji Salahu Yusuf
(Sept. 1995 - Nov. 2001)

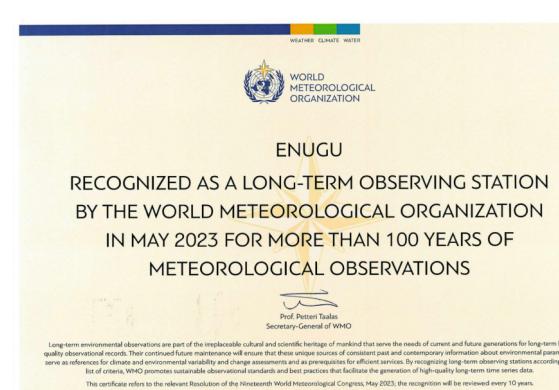
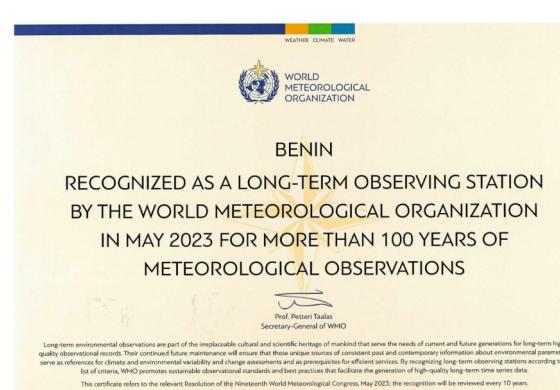
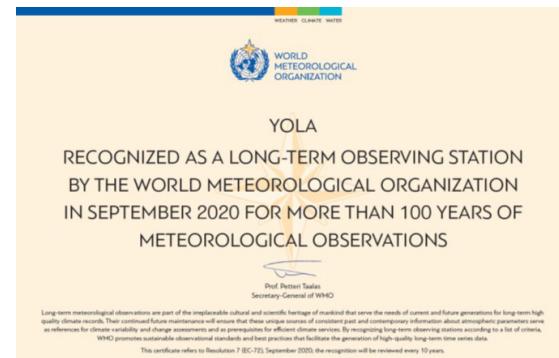
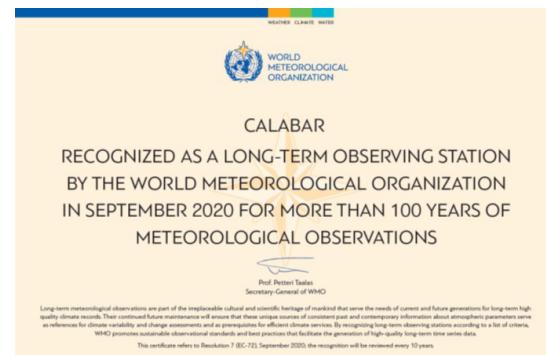
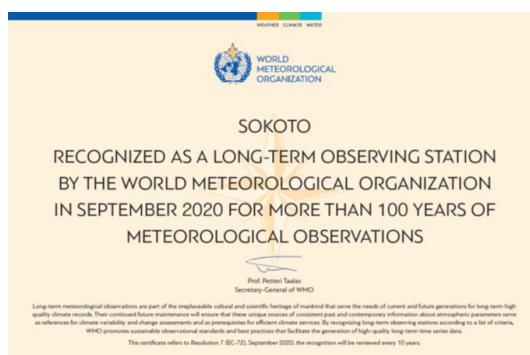
Chief Lihwu Eugene Akeh
(Nov. 2001 - May 2007)

Engr Jide Adeniji
(May 2007 - Jun 2007)

Dr. Anthony Anuforum
(Jun 2007 - Jan 2017)



Prof. Sani Abubakar Mashi
(Jan 2017 - Mar. 2021)






Prof. Mansur Bako Matazu
(Mar. 2021 - Dec 2023)

History of Meteorological Services in Nigeria

For efficiency and improved service delivery, NiMet Act of **2003** has been repealed and replaced with a new act: **NiMet Establishment Act, 2022**

Centenary Awards from WMO

Old Observations

Legacy of Excellence in Climate Science

AIR MINISTRY, METEOROLOGICAL OFFICE.																								
WIND TABULATION. Station.....Kano..... Anemograph.....4th..... Week ending Sat.....25th July 1962..... Unit of Velocity in Column B..... m.p.h..... Tab. No.....																								
Hours.	SUNDAY, 19th			MONDAY, 20th			TUESDAY, 21st			WEDNESDAY, 22nd			THURSDAY, 23rd			FRIDAY, 24th			SATURDAY, 25th			FREQUENCY TABLE.		
G.M.T.	A. Curve	B. Mean Speed	C. Mean Direction degrees	A. Curve	B. Mean Speed	C. Mean Direction degrees	A. Curve	B. Mean Speed	C. Mean Direction degrees	A. Curve	B. Mean Speed	C. Mean Direction degrees	A. Curve	B. Mean Speed	C. Mean Direction degrees	A. Curve	B. Mean Speed	C. Mean Direction degrees	A. Curve	B. Mean Speed	C. Mean Direction degrees	m.p.h.	m/s.	hours.
23.30	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
00.30	5 240	5 260	3 250	10 250	13 250	14 250	8 260	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
1.30	11 240	8 260	4 250	11 250	12 250	13 260	10 250	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
2.30	13 240	8 260	3 240	13 260	12 250	13 260	10 250	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
3.30	11 260	6 260	3 250	11 250	15 250	9 260	11 250	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
4.30	9 260	3 270	6 250	12 250	14 260	8 260	11 250	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
5.30	8 260	3 270	7 260	13 260	11 260	6 260	11 260	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
6.30	3 260	3 260	8 240	15 260	14 260	9 260	16 260	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
7.30	6 250	8 260	9 250	18 260	16 260	13 270	12 250	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
8.30	7 260	13 140	11 250	21 260	19 260	15 270	13 260	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
9.30	11 270	12 140	9 250	22 260	22 260	15 260	14 260	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
10.30	12 280	14 160	10 250	18 260	22 260	16 260	16 260	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
11.30	12 270	12 170	11 280	16 250	20 250	14 280	12 260	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
12.30	12 280	3 170	10 310	16 250	16 270	12 300	13 270	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
13.30	13 270	1 300	12 270	15 250	18 270	9 300	11 270	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
14.30	13 280	5 300	12 260	13 280	18 270	10 290	11 260	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
15.30	11 260	8 200	10 260	11 280	18 270	12 260	12 260	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
16.30	12 260	6 210	16 300	13 250	17 280	12 250	17 280	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
17.30	7 270	5 220	11 300	11 270	17 280	13 240	17 280	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
18.30	2 260	3 260	7 300	6 260	15 270	13 220	3 210	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
19.30	1 280	1 270	6 280	7 260	15 270	3 220	3 210	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
20.30	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
21.30	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
22.30	3 280	1 250	10 260	16 250	12 270	7 250	12 260	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
23.30	3 260	2 250	12 260	15 250	13 250	13 250	10 250	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Col. A.—Diff. 24—0	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Col. B.—Sum 1 to 24	186	—	1511	—	201	—	325	—	369	—	246	—	214	—	—	—	—	—	—	—	—	—	—	—
Col. A.—50 (N + 1)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Col. A.—Sum 24—0.4 50 (N+1)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Mean ...	—	7.7	—	5.5	—	8.4	—	13.5	—	15.4	—	10.3	—	8.9	—	—	—	—	—	—	—	—	—	—
REMARKS :—	Orientation tested..... Worked by..... Checked by..... 10.3 is the last 23.30 and 0 is the first 23.30.																							

Wednesday RAINGAUGE $\left\{ \begin{array}{l} 7\text{h. } 4.6 \text{ mm.} \\ \text{(RR)} \end{array} \right. \begin{array}{l} 0.18 \\ \text{18h. } 2.3 \text{ mm.} \end{array} \right. \text{ MAX. TEMP. } \left(\text{TxTx} \right) \left\{ \begin{array}{l} \text{read at 7h. } 88^{\circ}\text{F.} \\ \text{, 18h. } 89^{\circ}\text{F.} \end{array} \right.$

28th Oct. 1942 RECORDING { By trace.....mm. MIN. TEMP. (T_nT_n) { „ 7h.....68 °F.
RAINGAUGE In glass.....mm. „ 18h.....72 °F.

TOTAL RAINFALL (7h.-7h) mm. GRASS MIN. (TgTg),, 7h °F.

Hour G.M.T.	CLOUD					WEATHER		VISIB.	WIND		
	C _L and Form of Low	Form of Medium C _M	Amount of Low Tenths	N _h	Height of base of cloud in metres	Since last Observation W	At time ww		Land V	DD Direction	
		Form of High C _H	Total Amount Tenths	N	Code figure h				Sea V _s	Beaufort Force F	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)		
		—	—	—	To midnight 6a, 12m, 6p, c Since-midnight			—	—		
0400	S/Sc	3) Ac	7 15	400 E	SINCE 0000	c c	J	SE			
		—	9 16	4			—	3			
0700	S/Sc	2) Sc	7 15	600 E	1, m, 12m, 6p, c 6a, 12m, 6p, c 07/30	c	F	SE			
		—	9 16	4			—	2			
1000	S) Cu Sc	3) Sc	6 14	600 E	6a, 12m, 6p, c, h	h	L	SW			
		0	7 15	5			—	3			
1300	2) Cu	0	6 14	600 E			L	SE			
		2) Ci	8 15	5			—	2			
1600	S) Cu Sc	—	9 16	300 E	c, h, 6a, 12m, 6p, c, h	cir	J	SE			
		—	9 16	4			—	3			
		—	—	—			—	—			
		—	—	—			—	—			

Hour	IIIIC _L C _M	wwVhNh	DDFWN	PPP TT	UURRt _w	D _L C _H D _{MJJ}
0400	48553	02745	123 ⁶ 76	--- 69	97--8	3-0--
0700	48551	41445	12246	--- 72	97051	3-068
1000	48583	01854	20315	--- 81	76--0	5-0--
1300	48520	02854	12215	--- 85	72--0	0-0--
1600	4857-	63746	20386	--- 82	83023	---89
P.B.						